Examensarbete
15 högskolepoäng

Algebraiska aktiviteter inom gymnasiets Samhällsprogram

Algebraic activities within the Social Science Programme at upper secondary school

Åsa Wikborg

Lärarexamen 270 hp
Matematik och lärande
2010-06-07

Examinator: Tine Wedege
Handledare: Per-Eskil Persson
Sammanfattning

Nyckelord: algebra, aktivitet, gymnasiet, matematikkurs B, samhällsprogrammet
Innehåll

Sammanfattning ... 3
Inledning .. 7
Syfte och frågeställningar .. 7
Teoretisk bakgrund ... 8
 Algebra ... 8
 Skolalgebra ... 9
 Att undervisa i algebra .. 10
 Läroplaner och styrdokument .. 11
 Kursböcker .. 13
Algebraiska aktiviteter .. 13
 Spel .. 14
 Laboration .. 15
 Problemlösning ... 15
 Modellering ... 16

Metod ... 16
 Undersökningsmetoder .. 16
 Kvalitativa och kvantitativa intervjuer 16
 Textanalys .. 17
 Tillvägagångssätt .. 17
 Informanter ... 17
 Studie av läroböcker ... 18
 Validitet och Reliabilitet ... 19
 Urval .. 20
 Informanter ... 20
 Läroböcker och lärarhandledningar 20

Resultat .. 21
 Intervjuer .. 21
 Undersökning av förkunskaper ... 21
 Introduktion av området algebra 21
 Problemområden .. 22
 Förekomst av aktiviteter ... 23
 Lärobok och lärarhandledning ... 24
 Exponent Gul .. 24
 Matematik 3000 ... 25

Diskussion .. 26
 Trovärdighet ... 26
Förekomst av algebraiska aktiviteter på Samhällsprogrammet................................. 27
Algebraiska aktiviteter i lärobok och lärarhandledning .. 28
Lärarnas uppfattning om algebraiska aktiviteter i undervisningen 28
Lärares fortbildning ... 29
Konsekvenser för mitt framtida yrkesutövande... 30
Referenslista ... 32

Bilaga 1. Algebrakapplöpning
Bilaga 2. Schema för kategorisering av aktiviteter
Bilaga 3. Intervjufrågor
Inledning
Arbetet handlar om algebraiska aktiviteter. En algebraisk aktivitet kan vara ett matematikspel, laboration, eller en gruppaktivitet av formen större problemlösningsuppgift. Studien behandlar algebra på gymnasienivå och vad lärare anser om aktiviteter som en möjlig väg i undervisningen för att öka förståelsen och intresset för matematik.

Syfte och frågeställningar
Syftet med arbetet är att undersöka vilka algebraiska aktiviteter som förekommer på gymnasiet och om de kan underlätta elevers inlärning. Undersökningen ska svara på vad lärare anser elever har svårast för i algebra och om de har några undervisningsmetoder utöver läroboken. Vad de aktuella läroböckerna och lärarhandledningarna tar upp om algebra och aktiviteter ska också undersökas.

- Vilka sorts algebraiska aktiviteter används i Matematik B-kursen inom Samhällsprogrammet på en gymnasieskola, enligt lärarna?
- På vilka sätt tar den aktuella läroboken upp sådana aktiviteter och hur presenterar lärarhandledningen avsnittet algebra?
- Vad är lärarnas motivering till att använda/inte använda algebraiska aktiviteter?
Teoretisk bakgrund

Algebra

I många matematikböcker kan man läsa om algebrans väg till Norden via araberna. Ca 300 e Kr verkade astronomen och matematikern al-Khwarizmi i Visdomens hus i Bagdad. Han skrev en bok med titeln *al-jabr*, överföring av termer (Björk, Borg m fl. 2000) som har grundat nutidens namn algebra.

Det är ändå nödvändigt att på något sätt definiera algebra för att vidare kunna definiera skol-algebra. Wheeler (1996) ger ett förslag på vad algebra är:

- ett symboliskt system
- kalkylering – beräkningar av numeriska lösningar till matematiska problem
- ett representationssystem som matematiserar situationer och upplevelser

Det finns också en bredare definition av vad algebra är enligt Persson (2010), som innefattar allt från pre-algebra, algebraiskt och relationellt tänkande, funktioner och abstrakt algebra.
Skolalgebra

Even those students who manage to handle the algebraic techniques successfully often fail to see algebra as a tool for understanding, expressing, and communicating generalizations, for revealing structure, and for establishing connections and formulating mathematical arguments (proofs).

(Arcavi, 1994, sid 24)

Elever som lär sig algebraiska regler utan att ha någon uppfattning om varför lösningsmetoden gäller, riskerar att misslyckas när de träffar på liknande uppgifter i ett annat sammanhang exempelvis problemlösning. Arcavi ger i sin artikel exempel på vad symbolförståelse skulle kunna vara utan att direkt definiera begreppet. Nedanstående uppräkning är min egen översättning:

- Förmåga att avläsa algebraiska uttryck och göra uppskattnings av mönster som uppträder i numerära eller grafiska presentationer
- Förmåga att göra jämförelser mellan funktioner av formen n, n^2, n^3, …, n^k
- Förmåga att tolka värden i tabell, ur en funktion eller översätta en situation presenterad som text för att identifiera den troliga formen av en algebraisk regel som beskriver det lämpliga mönstret
• Förmåga att tolka algebraiska operationer och förutsäga dess resultat eller bedöma resultatet utifall det har blivit korrekt genomfört
• Förmåga att bestämma vilken av flera jämbördiga uttryck som är mest lämplig att besvara olika frågeställningar

Ett exempel är ekvationen \(\frac{2x+3}{4x+6} = 2\). Om den löses instrumentellt genom att multiplicera nämnaren på båda sidor och lösa ut \(x\), fås lösningen \(x = -\frac{3}{2}\) vilket ger nämnaren värdet noll. Det finns alltså ingen lösning eftersom täljaren är halva nämnaren. Arcavi (1994) hävdar att en förståelse för symboler krävs för att tolka liknande uttryck och inse, utan att utföra några manipulationer, att ekvationen saknar lösning.

Hur bedrivs då den undervisning som medför att eleven når dit? Även denna fråga förblir obesvarad men ett par implikationer delges läsaren (Arcavi, 1994); att algebra presenteras i varierande kontexter för att utveckla förståelsen för hur och när manipulationer ska utföras, att teknologiska verktyg är möjliga hjälpmedel att använda för undersökningslaborationer, att läraren uppmuntrar alternativa lösningsmetoder för att upptäcka beröringspunkter mellan dessa och de algebraiska. Slutligen föreslår Arcavi klassrumsaktiviteter som stimulerar till Vad händer om-frågor där symboler och regler ifrågasätts.

Att undervisa i algebra
algebraundervisning är att det är väsentligt att eleven inte bara utför mekaniska upprepningar utan också verkligen förstår vad de gör. Vidare hävdar hon att algebra måste bygga på begreppsförståelse, det vill säga eleven bör träna sig på att formulera hur han/hon tänker och reflektera över sina tankar.

Persson (2010) presenterar fyra olika vägar att närma sig algebra:

- Generaliseringsvägen
- Problemlöningsvägen
- Modelleringsvägen
- Funktionsvägen

Han menar att det är viktigt att variera undervisningen och utgå från olika vägar för att eleven ska ha möjlighet att uppnå både operationell och strukturell förståelse. En matematikcurs som varvar färdighetssträning, laborationer och problemlösning i olika former som räkning och gruppövningar är den bästa vägen för att uppnå detta. Persson poängterar att undervisningen ska utgå från matematiska aktiviteter som utvidgar elevens begreppsvärld;

Läroplaner och styrdokument

I Skolverkets styrdokument, strävansmålen för ämnet matematik (Skolverket, 2008a) finner man många kopplingar till algebra. Målen beskriver bland annat att eleven ska beredas i sin utbildning: ”… förmåga att kommunicera med matematikens språk och symboler, som är likartade över hela världen.” En tolkning kan vara att undervisningen ska innehålla träning i att med algebra, som är matematikens symbolspråk, beskriva händelser eller samband. Dessutom anger målen att eleven ska bli medveten om hur denne tänker i olika matematiska situationer:

… utvecklar sin förmåga att reflektera över sina erfarenheter av begrepp och metoder i matematiken och sina egna matematiska aktiviteter….

(Skolverket, 2008a, hämtat från internet)

Algebra har utvecklats över tusentals år och eleven bör förslagsvis få en bild av hur denna progression har skett för att tillågna sig en vidgad bild av ämnet. Detta synsätt får stöd i Styrdokumenten:
Matematikens idéhistoria kan bidra till en bild av hur olika begrepp och samband utvecklats. Detta kan motverka uppfattningen om matematiken som ett opersonligt färdigt ämne som är uppbyggt av fasta regler som endast skall läras utantill. (Skolverket 2008a, hämtat från internet)

Sammanfattningsvis ges här ges en möjlig anvisning att det är olämpligt att eleven endast lär sig instrumentell hantering av de algebraiska reglerna. Färdighetsträning av operationer som upprepas i uppgift efter uppgift lär eleven hur man gör i det specifika fallet men vari ligger den undervisningsbredd som styrdokumenten då antyder? I kursplan för matematik B (Skolverket, 2008b) står det angivet att eleven ska lära sig att hantera algebraiska uttryck:

kunna tolka, förenkla och omforma uttryck av andra graden samt lösa andragradsekvationer och tillämpa kunskaperna vid problemlösning. (Skolverket, 2008b, hämtat från internet)

Det är intressant att här koppla samman det första citatet till den algebraiska cykeln (Bell, 1996, citerad i Närnaren TEMA, 2004) som beskriver de nödvändiga kompetenserna:

För att eleven ska kunna tillämpa sin algebraiska kunskap vid problemlösning, som styrdokumenten kräver, behövs alla faserna i cykeln behärskas. Om detta förbises i
undervisningen förstår inte eleven algebran som både representativ och manipulativ (Nämnaren Tema, 2004)

Kursböcker

Traditionell katederundervisning är den vanligaste formen för en matematiklektion där eleven väldigt ofta räknar enskilt i kursboken.

Algebraiska aktiviteter

En algebraisk aktivitet innebär ett hanterande av matematiska uttryck där det förekommer symboler, bokstäver, vilket kan delas in i tre områden (Kieran, citerad i Persson 2010):

- **genererande aktiviteter**, utvecklande av förståelsen för symboler som generella tal, variabler och okända tal. Ett exempel är där elever i grupp undersöker studshöjd för olika bollar och ska bestämma en generell formel för beräkning av studshöjden.
• **transformerande aktiviteter**, utvecklande av manipulation och omformulering av algebraiska uttryck, där Matematikmemory är ett exempel på sådan aktivitet, se beskrivning nedan.

• **Globala/metanivå-aktiviteter**, utvecklandet av algebran som verktyg vid problemlösning, modellering, bevis. Här ingår båda ovanstående kategorier. Mönstergeneralisering är ett exempel på sådan aktivitet, där eleven ska lägga mönster av tändstickor och bestämma hur många stickor i figur n.

Att enskilt räkna uppgifter från läroboken som tränar faktorisering av uttryck är då egentligen en form av algebraisk, transformerande aktivitet. I denna studie gör jag en annan definition men använder mig av de beskrivna kategorierna; med algebraisk aktivitet menar jag elevaktivitet utöver enskild räkning i kursboken och lärarens genomgång av nytt stoff. Exempelvis kan aktiviteter betyda att man med hjälp av grafräknare/datorprogram undersöker algebraiska uttryck eller funktioner med avseende på parameterens betydelse. Under nedanstående rubriker presenteras aktiviteterna utifrån (undervisnings-)form och därefter angivit vilken kategori de tillhör.

Spel

Matematikmemory är ett annat spel där man precis som i vanligt memory ska para ihop två brickor. Eleven tränar på att se att två uttryck kan skrivas på olika sätt. Ett algebraframemory, som är också en transformerande aktivitet, går ut på att para ihop två kort med samma uttryck som är skrivet på två olika sätt, exempelvis \((x + 2)^2\) ska paras ihop med uttrycket \((x^2 + 4x + 4)\). Fördelen med dessa spel är bland annat att svårighetsgraden är enkel att variera. Inget av spelen ger eleven tillfälle att själv konstruera uttryck utan dessa fungerar mer som färdighetsträning på ett lustfyllt sätt.
Tankenöter, eller knep & knåp kan vara matematiska klurigheter där algebra är ett användbart redskap. Dessa tar, till skillnad från problemuppgifter, inte så mycket tid i anspråk. Ur rent definitionsmässig aspekt kanske detta inte räknas som algebraisk aktivitet, men det är en form av uppgift som avviker från läroboken. Syftet med en avbrytande aktivitet av denna art kanske inte främst är att eleven ska skaffa sig någon fördjupad kunskap inom något område, utan istället att skapa mer avslappnad och rolig gruppaktivitet.

Laboration

Problemlösning

pekar också på andra fördelar med att eleven får möta problemlösning i undervisningen. Bland annat kan nämnas att eleven tränar förmågan att läsa och tolka text, kritiskt granska resultat, skaffar en beredskap att hantera vardagsmatematik. Det finns tre lösningsstrategier i problemlösning; numeriskt prövande, laborativ/logisk och algebraisk (Malmer, 2002).

Modellering
Modellering, som är en sorts problemlösning i sig, utgår från en situation som inte betraktas som matematisk. Den beskrivs, undersöks och presenteras sedan med matematiska metoder. Ett exempel är ”Matematiska morgnar” (Blomhøj, 2006) där eleven arbetar i projektform för att beskriva sina vardagsmorgnar med matematik.

Metod

Undersökningsmetoder

Enligt Johansson och Svedner (ibid.) kan enkäter vara en vanskelig metod då svaren tenderar bli alltför kortfattade och svårtolkade. Denna metod var också något som min handledare avrådde mig ifrån. Eftersom jag inte var en alldeles obekant person för mitt urval passade dessutom intervjuer bättre. Observationer är något som blivit vanligare senare år (ibid.). För att få ett större bredd i min studie, och kunna studera elevers agerande på lektioner där det förekom någon algebraisk aktivitet, hade denna metod varit att föredra. På min valda skola var avsnittet algebra redan genomfört varför jag inte hade möjlighet att utföra några observationer.

Kvalitativa och kvantitativa intervjuer
Kvalitativa intervjuer är en metod som används när man vill ta reda på attityder, intressen och värderingar, till skillnad från kvantitativa intervjuer som används när man

Textanalys

Tillvägagångssätt

Informanter

Studie av läroböcker

- Vilka är de algebraiska aktiviteterna som tas upp i läroboken respektive handledningen?
- På vilket sätt förekommer de, som extraavsnitt eller del i kapitlet?
- Vilken kategori är vanligast, genererande, transformerande eller metanivå?
- Vad är de största skillnaderna/likheterna mellan böckerna i fråga om ovanstående?

Jag lånade alla böckerna på min partnerskola. Efter att ha gjort en grov översiktsläsning räknade jag igenom några valda uppgifter. Jag kategoriserade aktiviteterna utifrån det schema jag konstruerat i avsnittet Textanalys och antecknade förekomsten.
Validitet och Reliabilitet

Eleverna på skolan avslutar kurs B innevarande termin och det fanns ingen lärare som var villig att frångå sin redan tidspressade planering och låta mig leda en lektion så kort tid innan kursprovet, med så kort varsel. Mitt arbete hade haft större yttre validitet, anser jag, om jag hade kunnat utföra denna laboration. Dessutom ger examensarbeten som baseras på en enda undersökningsmetod, så kallat platt design, större svårigheter att formulera diskussionsavsnittet (Johansson & Sved, 2006). När inriktningen på min projektplan ändrades strök jag de frågeställningar som handlade om elevers synpunkter om algebraiska aktiviteter. För att till viss del komplettera den uteblivna undersökningen införde jag istället textanalys av läroböckerna.
Urval
Eftersom jag tidigt i utbildningen har fått förfrågan från min partnerskola om att undersöka elever på Samhällsprogrammet har jag valt att begränsa min studie till algebraiska aktiviteter som förekommer i Matematik B-kursen.

Informanter
De lärare som undervisade eller nyligen hade undervisat i B-kursen på Samhällsprogrammet var intressanta för mitt arbete. Skolan som valdes för min studie var min partnerskola. Jag har haft samma partnerskola under hela utbildningen och har god kändedom om hur undervisningen generellt bedrivs. Under senare år har det varit en del personalomsättning, flera av matematiklärarna har arbetat på skolan endast några år. Efter att precis ha fullföljt min verksamhetsfördrag tid kändes det naturligt att utföra intervjuerna på den aktuella skolan då jag lärt känna lärarna en del. Detta anser jag var en fördel för arbetet då jag kunde förvänta mig att ett visst förtroende för mitt arbete hade uppstått. Jag kunde också dra fördel av en mer avspänd intervju situering jämfört med om jag aldrig träffat informanten ifråga, vilket bidrar till att lärarna ger ärligare svar på frågorna (Johansson och Svedner, 2006).

Läroböcker och lärarhandledningar
Då skolan nyligen bytt kursbok för Samhällsprogrammet har jag valt att ta med både den aktuella boken och den tidigare. Skälet till detta är att jag vill ha möjlighet att göra en mindre jämförelse mellan böckerna. Detta kan också vara till användning för matematiklärarna som just nu utvärderar den nya kursboken.

Den tidigare kursboken var Matematik 3000 (Björk, Borg m fl.2002). Även denna kursbok och dess lärarhandledning har granskats i min studie.

Jag har inte undersökt vilka algebraiska aktiviteter lärarhandledningen föreslår i boken Exponent Gul då den inte var inköpt på skolan.
Resultat

Intervjuer
Totalt intervjuades fem lärare. Alla har arbetat flera år på skolan, varav tre lärare har mer än tjugo års yrkeserfarenhet. Det är endast fyra av lärarna som innevarande termin har en grupp elever från Samhällsprogrammet i Matematik B. Den femte läraren ingick i urvalet på grund av att denne haft motsvarande grupper flera gånger tidigare.

Undersökning av förkunskaper

Intro duktion av området algebra
uppgifter i boken. Här bör återigen poängteras att funktionsavsnittet finns i ett särskilt kapitel vilket kommer före algebraavsnittet. Vid intervjuerna framkom det att informanterna inte berättade om vad de gör i inledningen av funktioner eftersom det är så starkt avskilt. För alla lärare utom en krävdes det att jag kompletterade med en följdfråga om hur de introducerade funktioner (som också innehåller mycket algebra). Svaret jag fick var att de, med lite variation, hade en genomgång på tavlan av ett konkret exempel från elevens möjliga vardag (exempelvis årskort på ett gym där y är summan det kostar totalt, x är antal gånger man tränar) där slutklämmen resulterade i en linjär funktion som beskrev sambandet.

Problemområden

Samhällselevernas sämre prestationer i matematik, jämfört med Naturvetenskapslevernas, är ofta uppe för diskussion bland lärarna. Den allmänna uppfattningen är att Sp-eleverna har svårt med det mesta i matematik, inte endast algebra. Från intervjuerna framkommer det att lärarna är mest frustrerade över bristande kunskap om omskrivningar av algebraiska uttryck. De säger att eleverna exempelvis har svårigheter att förstå skillnaden mellan \(x + x \) och \(x \cdot x \). Även ekvationslösningar anges som ett område där de lägger mycket tid. De matematiska reglerna, kvadreringsreglerna, konjugatregeln, distributiva lagen är också något som eleverna har svårt att lära sig.

Enligt lärarna är detta en sorts baskunskaper som måste behärskas för att kunna gå vidare med andragradsekvationer och funktioner varför dessa nämns som första prioritet.

Alla lärare har samma uppfattning om varför elever som valt Samhällsprogrammet har sämre resultat än de elever som läser Naturvetenskap. I andra ämnen som fysik och kemi är det nödvändigt att kunna avancerad matematik, till exempel exponentialfunktioner och trigonometri. Formler för rörelse vid fritt fall resulterar ofta i att en andragradsekvation ska lösas och eleverna har då inga problem med att inse nytan av att behärska algebra enligt lärarna. Från andra ämnen får de alltså naturligt utökad begreppsbildning i matematik. Att Sp-eleverna inte kan se nytan med att lära sig abstrakt matematik är den huvudsakliga anledningen till lägre resultat eftersom det då inte finns någon motivation till att lära sig något, mer än för betygets skull menar lärarna.

Lärarna uttrycker också att elevernas negativa attityd till matematik är svår att komma förbi då den härrör från händelser i elevernas grundskoleutbildning. Deras
motstånd till ämnet och uppfattning om sig själv som icke-matematiska är fast cementerat och lärarna anser inte att det går att arbeta bort på detta stadium. Vad gäller matematisk begåvning går åsikterna isär. Någon lärare säger att eleverna inte har den begåvningen eller känslan för matematik och därför inte heller kan nå upp till några goda resultat. Men de övriga anser att elevernas bristande intresse är den främsta orsaken, vilket de också säger visar på val av program.

Grundskolans hanterande av algebra är också en bidragande faktor enligt lärarna. Att omvandla algebraiska uttryck och förstå att bokstäver ibland står för ett obekant tal och ibland för en variabel kräver färdighetsträning. Denna träning bör starta tidigare i årskurserna och det är även grundskolans tidiga införande av räknare och dåliga undervisning som betraktas vara en del av problemet anser lärarna. En lärare menar att det är förekomsten av många obehöriga lärare på grundskolorna, de har anställts som billig arbetskraft av kommunerna för att spara pengar, och kvalitet på undervisningen uteblir av den anledningen påstår han.

Förekomst av aktiviteter

Det existerar en del algebraiska aktiviteter i undervisningen bland informanterna. Bland de intervjuade är det de som studerat på lärarutbildningen mindre än tio år tidigare som direkt förstår min fråga. De kan genast räkna upp flera aktiviteter och har lätt för att förklara varför de anser att det är en bra metod. Men alla lärarna säger sig någon gång i algebraavsnittet bryta med en gruppaktivitet av något slag. Det är endast en lärare som i år enbart bedriver så kallat traditionell katederundervisning. Han motiverar detta med sin negativa erfarenhet, eleverna har inte varit vana vid det och mer betraktat det som lek och studieron i klassrummet har uteblivit.

Begreppet aktivitet definieras av lärarna som en laboration, större gruppaktivitet eller ett matematikspel. Aktiviteterna bidrar till att elevernas förståelse blir bättre, det vill säga de har lättare för att se de olika uttrycksformerna i kursböckernas uppgifter enligt lärarna. De känner inte heller lika stor rädsla för algebra om de har fått arbeta med det på ett annorlunda sätt, hävdar informanterna. Samtidigt kan de återkoppla till aktiviteten när de går djupare in i avsnittet. De upplever också att eleverna tycker lektionerna blir roligare och mer stimulerande när de får frångå kursboken ibland. De lärare som har undervisat samma grupp i matematik och haft kontinuerligt varierande undervisning säger att elevernas syn på laborationer och spel är mer positiv än för de som inte är så vana vid arbetssättet.

Lärobok och lärarhandledning

Exponent Gul

Matematiklärarna har innevarande läsår använt Exponent Gul (Gennow, Gustafsson & Silborn, 2008), som ska vara anpassad för elever som endast läser kurs B och möjligtvis C. Algebra kom efter avsnittet om linjära funktioner och boken börjar med att repetera förenkling av uttryck. Genomgående i kapitlet finner man övningar av rutinkarakter som föregås av ett exempel. Dessa uppgifter utgör 90 % av hela kapitlet. Avsnitten avslutar med kontextbaserade uppgifter men dock väldigt få, ca 5 %. Dessa är ibland märkta med en eller två röda pilar vilket betyder att det är extra svåra uppgifter. Sist i algebrakapitlet visas tre uppgifter under rubriken ”Utmaningar” som enligt författarna: ”stimulerar din kreativitet och tränar färdigheten att lösa matematiska problem.” (Gennow m.fl. 2008) De två första är av aritmetisk karaktär där egentligen ingen algebra behövs men eleven bör upptäcka ett mönster. I den sista uppgiften får läsaren en formel med två variabler som beskriver kanonkolor staplade i en pyramid, se nedan. Här ska tre frågor besvaras varav den sista är av karaktären bevis, metanivå:
Kolor i fyrkant

På den tiden kanonkolor var klotrunda brukade de staplas i pyramidform. Om basen i pyramiden är en rektangel där den långa sidan har m st kulor och den korta sidan n st kulor blir det totala antalet kulor i pyramiden: $\frac{n(n+1)(2m-n+1)}{6}$

a) Hur många kulor är det i en pyramid med basen 10 x 8 kulor?

b) Vilken bas har en pyramid som innehåller 2 091 kulor?

c) Formeln förutsätter att täljaren är delbar med 6. Är den alltid det?

(Gennow m fl 2008, sid 92)

Funktioner av första graden inleder boken. Här förutsätter författarna att eleven har kunskaper från matematik A-kursen gällande de olika sätt ett samband mellan två variabler kan presenteras på. Av alla uppgifterna består 56 % av färdighetsträningsuppgifter, transformerande, utan kontextuellt sammanhang. Hela 30 % av uppgifterna är textuppgifter och i 14 % av uppgifterna förväntas eleven förklara/undersöka och skriva med ord sin slutsats. Även här avslutas kapitlet med 3 "utmaningar" som kan betraktas som problemlösningsuppgifter.

Modelleringssperspektivet finns inte i boken.

Matematik 3000

Lärarhandledningen till Exponent Gul har inte inköpts i samband med kursböckerna, därför är den inte redovisad här. Istället har jag studerat Matematik 3000 kurs B. I den finns det flera förslag på aktiviteter. Författarna anger när dessa anses lämpliga att utföra.
Första aktiviteten är en sida med påståenden där eleven ska avgöra om det är sant eller falskt. Handlingen förklarar att aktiviteten ska hjälpa eleven att reflektera över sina erfarenheter om uttryck, ekvationer och funktioner av första och andra graden. Syftet är att argumentera tillsammans med en kamrat och på så vis träna på att uttrycka sig matematiskt. Denna aktivitet är av genererande karaktär.

I lärarhandledningen finns också en laboration av metanivåkaraktär där eleven ska undersöka rektanglar med olika area men samma omkrets. Syftet med laborationen är att komma fram till en generell funktion som beskriver arean som funktion av basen. Här tränar eleven på att ställa upp, tolka en matematisk modell.

Sista aktiviteten är ett spel, en variant av algebrakapplöpning. Den rekommenderas som avslutande aktivitet på avsnittet. Spelet består av tre ronder där den eleven med högsta summan på sina uttryck vinner de två första och den med minst summa vinner den sista ronden.

Diskussion

Från min lärarutbildning har jag fått mycket inspiration och material till att utveckla en varierad undervisning. Min litteraturstudie har dessutom bekräftat betydelsen av att arbeta med olika metoder i matematik och särskilt då algebra. De empiriska undersökningarna jag har tagit del av förstärker min uppfattning om vinjen av att bedriva en konceptuell undervisning där eleven får möta olika arbetssätt. Jag har samma erfarenheter som de lärarna jag intervjuat vad gäller elevers svårigheter för algebra. Att med hjälp av matematiksidor på nätet och tillgänglig forskning ta del av nya metoder och angreppssätt bör vara naturligt för varje lärare anser jag. Denna studie visar att det förekommer algebraiska aktiviteter på gymnasiets samhällsprogram enligt lärarna.

Trovärdighet

Undersökningen är av intresse inte bara för mig, utan även för min partnerskola som aktivt arbetar för att förbättra matematikundervisningen. Den yttre validiteten är således god även om den kanske inte kan bidra så mycket i andra sammanhang utöver den aktuella skolan.

Förekomst av algebraiska aktiviteter på Samhällsprogrammet

Innan jag började med mitt arbete var min outtalade hypotes att det inte skulle förekomma några algebraiska aktiviteter i undervisningen. Största anledningen till detta var min egen erfarenhet från tidigare praktik på skolan. Även diskussioner bland mina kursdeltagare från lärarhögskolan bekräftade att den vanligaste undervisningen i matematik på gymnasieskolor bestod av traditionell katederundervisning, vilket också bekräftas av gjorda studier (Skolverket, 2003). Men det har visat sig att så inte riktigt är fallet. Min slutsats är att lärare med färskare utbildning är mer påtagliga att variera sin undervisning. Det är också de som flitigast söker efter nya aktiviteter och angreppssätt i algebra. De lärare som använder algebraiska aktiviteter av någon form anger inte direkt motiveringen utifrån aktuell forskning eller lärandeteorier.

De aktiviteter som informanterna berättat om är bland annat algebrakapplöpning, laboration om studshöjd och mönsterlaboration (exempelvis lägga tändstickor i mönster för att komma fram till ett generellt uttryck för figurerna). Dessa tillhör kategorierna transformerande och metanivå. Alla fyra perspektiven är presenterade förutom modelleringsperspektivet. Min första kontakt med modelleringsperspektivet var i kursen Didaktisk forskning på lärarutbildningen där jag läste om ”Matematiska morgnar” (Blomhøj, 2006) och blev mycket inspirerad. Om man ska leda eleverna mot en både strukturell och konceptuell förståelse för algebra är det kanske nödvändigt att även låta eleverna möta den fjärde vägen mot algebra?
Styrdokumenten ger inga direktiv hur undervisningen ska bedrivas. I kursplanen för matematik, Ämnets syfte, (Skolverket, 2008b) kan man läsa att “... eleverna skall uppleva glädjen i att utveckla sin matematiska kreativitet och förmåga att lösa problem...”. Min åsikt är att om eleven ska ha möjlighet att få utveckla sin matematiska kreativitet måste denne också då få möjlighet att vara kreativ.

Algebraiska aktiviteter i lärobok och lärarhandledning

Om man bara tar läroboken och handledningen blir det ingen variation i undervisningen då det inte förekommer speciellt mycket aktiviteter. En undervisning baserad endast på läroboken mynnar ut i en torftig uppfattning om vad matematik är. Eleven får en procedurell inställning till vad ämnet står för och begrepp blir inte accepterat på ett djupare plan utan endast instrumentellt inlårt (Skolverket, 2007). Denna visar sig då att eleven inte kan följa hela den algebraiska cykeln och får svårigheter med att hantera algebra, något som även min studie indikerar. Slutsatsen är att en undervisning där aktiviteter är vanligt förekommande kan bidra till att ge elever mer lust att lära och även en syn på algebra som både objekt- och processinriktad. Min undersökning antyder att elever som är vanade att arbeta med matematik på olika sätt också är mer positivt inställda att frångå enskild räkning som enda aktivitet. Detta bekräftas också av andra undersökningar (Persson 2010).

Lärarnas uppfattning om algebraiska aktiviteter i undervisningen

De lärare som påstår sig använda laborationer eller spel för att variera sin undervisning anger motiveringen att de upplever att elevernas inlämnning underlättas. En lärare menar att när eleverna blir mer engagerade och tar aktiv del i undervisningen blir det en mer positiv stämning i klassrummet. Hon menar vidare att samhällselever generellt sett har ett stort motstånd till matematik och aktiviteter tar bort rädslan för algebra som något

Lärarens fortbildning

Fortbildning är både skolans och lärarens ansvar. Skollagen ger kommunerna och landsting uppdraget att se till att detta sker, men det är också lärarens personliga ansvar att hålla sina kunskaper uppdaterade och där det är nödvändigt komplettera sin utbildning. Ordet fortbildning är numera ändrad till kompetensutveckling, som inbegriper allt från ämnesfördjupning till arbetslagsutveckling och verksamhetsutveckling (NCM, 2001). Det finns inga lagstadgade antal dagar avsatta för detta, det är upp till var skola att organisera tiden.

En lärare arbetar alltså på regeringsuppgdrag men är anställd av kommunen. Här kan jag se en konflikt mellan intentioner för svensk undervisning och genomförbarheten. För lärare på kommunala skolor är det små summor som avsätts till fortbildning. Oftast har inte matematiklärarna möjlighet att besöka exempelvis matematikbiennaler eller läsa kurser med nedsatt tjänstefördelning på grund av skolornas bristande ekonomiska resurser. Många lärare jag pratat med uttrycker också en oro för ökande undervisningstid då mindre tid blir över för utvecklande av den egna undervisningen och uppdatering av forskning och rapporter. Persson (2010) menar att det sker förändringar i samhället som medför förändring i undervisningsstrategier och att yrkesverksamma lärare behöver kontinuerlig fortbildning:

Eftersom samhället förändras och utvecklas, måste undervisningen följa med. Detta kräver förstås att man som lärare både är medveten om detta och har beredskap att anpassa sin undervisning, och det i sin tur är avhängigt av vilka kunskaper man har och vilka möjligheter man har att utveckla dem.

(Persson, 2010, sid 8)

Konsekvenser för mitt framtida yrkesutövande

konceptuell förståelse av algebra, både som uttryck och funktioner. Han menar också att en bättre algebraundervisning inbegriper många olika arbetssätt och metoder.

Referenslista

Algebrakapplöpning

Start

Mål

Spelplan
<table>
<thead>
<tr>
<th>Kategori</th>
<th>Generalisering</th>
<th>Funktion</th>
<th>Problemlösning</th>
<th>Modellering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genererande</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformerande</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global/Metanivå</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Intervjunall

Lärare

- Hur undersöker du elevers förkunskaper om algebra?
- Hur introducerar du området algebra?
- Vad anser du att eleverna har svårast för? Varför tror du det är så?
- Använder du dig av några aktiviteter i undervisningen? Varför/varför inte?
- Vilka aktiviteter använder du dig av i undervisningen?
- Var anser du är bäst att skaffa lektionsmaterial (annat material än läroboken) om algebra?