Examensarbete
15 högskolepoäng

Uppgradering och byggnadsvård
En fallstudie av energieffektivisering och byggnadsvårdande renoveringsåtgärder

Upgrading and building preservation
A case study of energy efficiency and building preservative restoration actions

Bo-Magnus Olsson

Byggteknik- och Byggdesignprogrammet 180 hp

Handledare: Catarina Thormark

Datum för inlämning: 2010-06-03

Examinator:
Johnny Kronvall
Sammanfattning

Äldre fastigheter ger staden ett mångfacetterat uttryck och skapar fysiska kopplingar till historien. De är dock ofta energislukande med dåligt värmeisolerade klimatskal och omoderna installationer. Går det att renovera äldre byggnader så att de blir energisnåla och uppfyller samtidens byggnormer? Innebär en sådan renovering att dess arkitektoniska kvaliteter går förlorade?

I uppsatsen förs främst kvalitativa resonemang kring renovering och byggnadsvård med utgångspunkt i inventeringen av fastigheten, litteratur och intervjuer med aktörer kring renoveringsprojektet. Uppsatsen beskriver också hur installationer kan uppraderas vid en renovering och hur aktörerna i projekteringsprocessen med kvarteret Oket resonerat kring sina planerade renoveringsåtgärder.

Resultaten av studien visar att isolering av klimatskalet inte prioriteras av byggherren, med undantag av byggnadernas tak. Istället beräknar byggherren att en uppradering av byggnadens ventilationssystem och en omdisponering av byggnadens funktioner kommer att medföra en total energieffektivisering tillräckligt stor för att klara reglerna. Renoveringen av kvarteret Oket kommer därför inte att på något avgörande sätt förändra byggnadens exteriör.

I uppsatsen förs kvalitativa resonemang kring byggnadsvård. Dessa resulterar i slutsatsen att en förutsättning för att en byggnad karakter ska kunna bevaras i samband med en renovering är dels en aktiv, kunnig och engagerad myndighet, dels en kompetent och ekonomiskt långsiktig fastighetsägare.
Abstract

Old buildings give the city a varied expression, and create physical connections to the past. They are, however, often energy-guzzling with poorly insulated shells and obsolete installations. Is it possible to renovate old buildings to make them energy efficient and to meet the regulations for contemporary building? Does such a renovation mean that the building’s architectural qualities are lost?

The essay is based on kvarteret Oket consisting of various building components constructed in 1910, 1927, 1938, 1945 and 1970. An inventory is made considering constructional design and architectural style. On this basis, the essay proposes appropriate restoration actions that can result in reduced energy use without changing the buildings’ style. These actions will be weighed against the measures planned by the property owner.

The study discusses mainly qualitative aspects on the renovation of the buildings based on the inventory, literature and interviews with persons involved with the renovation project. The essay also describes how installations can be upgraded during a renovation and how the planning process deals with different renovation options.

The results of this study show that actions resulting in insulation of the buildings’ shell are not given priority to by the owner and his consultants, with the exception of one of the buildings roof. Instead, the developer estimates that an upgrade of the buildings ventilation system and a reconfiguration of the building's features will result in an overall energy savings sufficient enough to meet the rules. The renovation of kvarteret Oket will not result in any significant change in the buildings exterior.

The qualitative discussions of the preserving of old buildings’ style also results in the conclusion that in order to preserve a buildings character when renovating, an active, knowledgeable and committed authority and a competent and financially long-term property owner is required.
Innehållsförteckning

<table>
<thead>
<tr>
<th>Avsnitt</th>
<th>Sida</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEORI</td>
<td>6</td>
</tr>
<tr>
<td>LAGAR OCH REGLER</td>
<td>6</td>
</tr>
<tr>
<td>Allmänt om regelverket</td>
<td>6</td>
</tr>
<tr>
<td>Allmänna råd om ändring av byggnad, BÄR</td>
<td>7</td>
</tr>
<tr>
<td>Energideklaration</td>
<td>7</td>
</tr>
<tr>
<td>ALLMÄNT OM BYGGNADSFYSIK</td>
<td>8</td>
</tr>
<tr>
<td>Energibalans</td>
<td>8</td>
</tr>
<tr>
<td>Specifik energianvändning</td>
<td>9</td>
</tr>
<tr>
<td>Allmänt om energiförluster</td>
<td>9</td>
</tr>
<tr>
<td>U-värde</td>
<td>11</td>
</tr>
<tr>
<td>Energiberegningsprogram</td>
<td>12</td>
</tr>
<tr>
<td>Beräkningsfel</td>
<td>12</td>
</tr>
<tr>
<td>Gratisvärme</td>
<td>12</td>
</tr>
<tr>
<td>Installationer</td>
<td>13</td>
</tr>
<tr>
<td>Historisk utvikling om värme- och ventilationssystem</td>
<td>13</td>
</tr>
<tr>
<td>ALLMÄNT OM EKONOMI</td>
<td>14</td>
</tr>
<tr>
<td>LCC-metod</td>
<td>14</td>
</tr>
<tr>
<td>Kostnadseffektivitet och CEI-värde</td>
<td>14</td>
</tr>
<tr>
<td>OBJEKTBESKRIVNING KVARTERET OKET</td>
<td>16</td>
</tr>
<tr>
<td>KVARTERETS STIL</td>
<td>16</td>
</tr>
<tr>
<td>Datering av huskropparna</td>
<td>16</td>
</tr>
<tr>
<td>Omgivande bebyggelse</td>
<td>16</td>
</tr>
<tr>
<td>Bedömning av kvartersets arkitektoniska stil</td>
<td>17</td>
</tr>
<tr>
<td>BYGGNADERNAS KONSTRUKTION</td>
<td>19</td>
</tr>
<tr>
<td>Inventering och beskrivning av huskropparna</td>
<td>19</td>
</tr>
<tr>
<td>Huskropp ett</td>
<td>19</td>
</tr>
<tr>
<td>Huskropp två, gathuset</td>
<td>19</td>
</tr>
<tr>
<td>Huskropp tre, gårdshuset</td>
<td>22</td>
</tr>
<tr>
<td>BEFINTLIGA VVS-LÖSNINGAR</td>
<td>24</td>
</tr>
<tr>
<td>Ventilationssystem</td>
<td>24</td>
</tr>
<tr>
<td>Värmesystem</td>
<td>24</td>
</tr>
<tr>
<td>RESULTAT</td>
<td>25</td>
</tr>
<tr>
<td>KLIMATSKALETS BYGGNADSFYSikaliska egenskaper och förslag på åtgärder</td>
<td>25</td>
</tr>
<tr>
<td>Massiva tegelväggar</td>
<td>25</td>
</tr>
<tr>
<td>Det påstådda våningsplanet</td>
<td>27</td>
</tr>
<tr>
<td>Ufacknätningsväggar</td>
<td>27</td>
</tr>
<tr>
<td>Lättbetongtak</td>
<td>27</td>
</tr>
<tr>
<td>Fönster och ytterdörrar</td>
<td>27</td>
</tr>
<tr>
<td>RENOVERINGSÅTGÄRDER I FASTIGHeten</td>
<td>28</td>
</tr>
<tr>
<td>Allmänt</td>
<td>28</td>
</tr>
<tr>
<td>Byggnadernas renoveringsbehov</td>
<td>28</td>
</tr>
<tr>
<td>Nya funktioner</td>
<td>28</td>
</tr>
<tr>
<td>Energieffektiviserande åtgärder</td>
<td>29</td>
</tr>
<tr>
<td>KVALITATIVA RESOEMANG KRING RESULTATEN</td>
<td>30</td>
</tr>
<tr>
<td>Energi och ekonomi</td>
<td>30</td>
</tr>
<tr>
<td>Incitament för energieffektiviseringar hos användarna</td>
<td>31</td>
</tr>
<tr>
<td>Byggnadsvärd</td>
<td>31</td>
</tr>
<tr>
<td>AVSLUTANDE DISKUSSION</td>
<td>32</td>
</tr>
<tr>
<td>KÄLLOR</td>
<td>33</td>
</tr>
</tbody>
</table>
Inledning

Bakgrund

Syfte
Syftet med uppsatsen är att inventera fastigheten i kvarteret Oket och föreslå åtgärder som kan minska energianvändningen utan att förändra byggnadens stil. Åtgärderna ska även jämföras med hur fastighetsägaren resonerar vid planeringen av renoveringen.

Avgränsningar
Jag kommer inte att teoretiskt behandla begrepp som arkitektonisk kvalitet, utan har godtyckligt valt målsättningen att renoveringen inte ska medföra någon större förändring av byggnadens ursprungliga karaktär. Dess karaktär behandlas dock i form av en jämförande studie av referensobjekt ur arkitekturhistorien.

Jag kommer att lägga tonvikten vid klimatskalet och framför allt exteriören som karaktärskapande element. Inredning, beslag och installationer behandlas inte ur estetiskt perspektiv i uppsatsen.

De grunder för hur en renovering genomförs kan vara flera. Jag kommer att undersöka vad som prioriteras i renoveringsprojekteringen och jämföra detta mot Boverkets råd om varsamhet om byggnadens karaktär vid renovering. Politiska perspektiv som hållbar utveckling, motverkande av global uppvärmning etc. kommer inte att behandlas. Energin som åtgår vid själva renoveringen och vid framställningen av byggnadsmaterialen avhandlas heller inte.

Uppsatsen kommer att hållas på principnivå. Jag kommer inte att belägga mina resultat med beräkningar utan referera till andras resultat från liknande fall.
Metod

Teori

Lagar och regler

Allmänt om regelverket

Föreskrifter och allmänna råd för byggande anges i Boverkets byggregler, BBR. Dessa syftar till att säkerställa att byggnader i Sverige är robusta, energisnåla och komfortabla att vistas i. Här följer en kort sammanställning av de svenska byggreglerna och energideklaration.

BBR är tolkningar av lagar och förordningar som är beslutade av Sveriges riksdag\(^1\). Dessa är:

- Plan- och bygglagen (1987:10), PBL
- Plan- och byggförordningen (1987:383), PBF
- Lagen (1994:847) om tekniska egenskapskrav på byggnadsverk, BVL
- Förordningen (1994:1215) om tekniska egenskapskrav på byggnadsverk, BVF.

Viktigt att skilja på i dessa sammanhang är att: ”Lag som beslutas av riksdagen, förordning som beslutas av regeringen och föreskrifter som myndigheter beslutar är bindande regler. Allmänna råd är exempel på hur regler kan följas.”\(^2\)

BBR behandlar de egenskaper som byggnaden och dess delar förväntas ha och ger råd om hur dessa egenskaper ska kunna uppnås. Första januari 2010 skärttes karaven för energianvändning i och med att de nya reglerna i BBR 16 trädde i kraft. Det är framför allt kravet att både energianvändning och \(U_m\)-värde ska uppnås. Kraven är strängare för byggnader som värms upp med el. Värdena för en byggnad som inte värms av el i klimatzon 3 och därmed för Skånelän är följande:

Bostäder

Byggnadens specifika energianvändning [kWh per m\(^2\) \(A_{\text{temp}}\) och år]: 110

Genomsnittlig värmegenomgångskoefficient, \(U_m\) [W/m\(^2\) K]: 0,50

Lokaler

Byggnadens specifika energianvändning [kWh per m\(^2\) \(A_{\text{temp}}\) och år]: 100

Genomsnittlig värmegenomgångskoefficient, \(U_m\) [W/m\(^2\) K]: 0,70

Om ventilationen med uteluft, \(q_{\text{medel}}\), under uppvärmningssäsongen är högre än 0,35 l/s och m\(^2\) \(A_{\text{temp}}\) sänks kraven specifik energianvändning för lokaler med 70(\(q_{\text{medel}}-0,35\)), där \((q_{\text{medel}}-0,35)\leq 1\).

Om en byggnad innehåller både bostäder och lokaler viktar man de olika ytornas, \(A_{\text{temp}}\),andelar och beräknar ett för byggnaden specifikt värde.

I BBR16 specificeras också maximal värmegenomgångskoefficienten för omslutande byggnadsdelar, \(U_i\):

\(U_{\text{tak}}\) [W/m\(^2\) K]	0,13	\(U_{\text{ytterdörr}}\) [W/m\(^2\) K]	1,3
\(U_{\text{vägg}}\) [W/m\(^2\) K]	0,185	\(U_{\text{förster}}\) [W/m\(^2\) K]	1,3
\(U_{\text{golv}}\) [W/m\(^2\) K]	0,15		

\(^1\) BBR 2008, s.12
\(^2\) Energideklaration för byggnader – en regelsammanställning, Boverket 2007, s.3
Reglerna gäller för nybyggnationer, tillbyggnader, mark- och rivningsarbeten³.

Allmänna råd om ändring av byggnad, BÄR

Verksamhetskravet gäller såväl energianvändning, ventilation som tillgänglighet, handikappanpassning med mera. I BÄR betonas vikten av att vid renoveringar i möjligaste mån bevara byggnadens ursprungliga karaktär men man slår alltså fast att samtidens verksamhetskrav är styrande. I de allmänna råden står: "Uppfyller inte byggnaden de i BBR 9:2 och 9:3 angivna nivåerna (avser energianvändning, min anmärkning) bör en genomgång göras av vilka åtgärder som kan vidtas för att minska byggnadens energianvändning och som är förenliga med byggnadens byggnadstekniska, historiska, kulturhistoriska, miljömässiga och konstnärliga värden."⁵ Det tolkningsutrymme som här ges överläts till länsstyrelsen och kommunens bygglovsprövning.

Beträffande energianvändning anges det att "byggnader skall vara utformade så att energianvändningen begränsas genom låga värmeffekter, lågt kylbehov, effektiv värme- och kylanvändning och effektiv elanvändning. Vid nybyggnad anges i avsnitt 9 i BBR den högsta tillåtna specifika energianvändningen för olika typer av byggnader. Kraven ställs på hela byggnaden, inte enskilda delar eller system."⁶

Energideklaration
Europaparlamentet beslutade 2002 om energicertifiering av Europas bostäder och lokaler. Detta infördes 2006 i svensk lag genom:

- Lag (2006:985) om energideklaration för byggnader
- Förordning (2006:1592) om energideklaration för byggnader

Syftet med lagen är att minska energianvändningen och därmed dels att minska utsläppen av koldioxid dels att minska Europas beroende av importerad energi. Energideklarationen är tänkt att åskådliggöra energianvändningen för fastighetsägarna, som i sin tur antas stimulera energieffektiviserande åtgärder.

I lagen och dess förordningar beskrivs vilka byggnader som ska energideklareras, men också hur och av vem en energideklaration genomförs fastslås. Till lagtexten finns även här Boverkets föreskrifter och allmänna råd. De som rör energideklarationer är:

- Boverkets föreskrifter och allmänna råd om energideklaration för byggnader (BFS 2007:4)
- Boverkets föreskrifter och allmänna råd om certifiering av energiexpert (BFS 2007:5)

Energideklarationer ska utföras av en certifierad oberoende energiexpert och besiktningens omfattning beror på byggnadens energieffektiviseringspotential.

Allmänt om byggnadsfysik

Byggnadsfysiken svarar på frågor om hur man konstruerar en byggnad med god innemiljö, låg energianvändning och god beständighet.8 För att kunna uppnå detta bör klimatskalet vara lufttätt och väl isolerat.

Det som gör ämnet komplicerat är fuktproblematiken. Ett välisolerat klimatskal har, i högre grad än ett sämre isolerat, en varm och en kall sida av det värmeisolerande skiktet. Detta ökar risken för att vattenånga i exempelvis en vägg kondenseras i den kallare delen, vilket i sin tur kan leda till frostsprängning av fasaden eller mögel och röta inne i väggen.

Eftersom låg energianvändning är ett prioriterat krav kan marginalerna bli små för att undvika fuktproblem. Detta ställer stora krav vid dimensionering, materialval, utförande och underhåll av byggnaden.

Jag kommer här att kort beskriva de några av de begrepp som förekommer i arbetet.

Energibalans9

Till en uppvärmd eller kyld byggnad tillför man energi som på olika vis överförs till omgivningen utanför klimatskalet. Vid konstanta temperaturer ute och inne råder energibalans och då motsvarar energiläckaget den tillförda energin. Mera specifiserat kan energibalansen formuleras som:

\[
Q_{\text{energi}} = Q_t + Q_v + Q_{tvv} + Q_{avlopp} + Q_{dr,el} - Q_{vå} - Q_{tillskott} \pm Q_{sol} \quad [kWh/år]
\]

\(Q_{\text{energi}}\) är tillförd energi

\(Q_t\) är transmissionsförluster inkl. köldbryggor

\(Q_v\) är ventilationsförluster

\(Q_{tvv}\) är luftläckageförluster, otätheter och vädring

\(Q_{avlopp}\) är uppvärming av tappvatten

\(Q_{spill}\) är uppvärmning i spillvattnet

\(Q_{dr,el}\) är distributions- och reglerförluster

\(Q_{vå}\) är värme från värmeväxlar, värme pump, solvärme, solceller mm

\(Q_{tillskott}\) är värme från personer, belysning, hushållsmaskiner mm

\(Q_{sol}\) är strålningsvärme från solen/rymden, som är negativ nattetid

8 http://www.boverket.se/Bygga--forvalta/Energideklaration/Energiexpert/
9 Tillämpad byggfysik s 62, Petersson, Studentlitteratur 2007
9 Tillämpad byggfysik, kapitel 4.7, Petersson, Studentlitteratur 2007
Storleken på de olika energiförlusterna beror alltså på skillnaden på temperaturen utom- och inomhus, hur byggnaden och dess installationer är konstruerade och hur byggnaden används.

Specifik energianvändning

För att kunna jämföra olika byggnaders energianvändning delar man den tillförda energin med den uppvärmda ytan.

\[
Q_{\text{Specifik energi}} = \frac{Q_{\text{energi}}}{A_{\text{temp}}} \quad \left[\text{KWh/m}^2\text{år}\right]
\]

\(A_{\text{temp}}\) är golvytan inomhus där temperaturen är mer än 10°C. Den tillförda energin i en befinnlig byggnad är energin till värme, kyla, tappvatten, drift med mera, plus gratis energi i form av solstrålning och värme från användarnas verksamhet.

Allmänt om energiförluster

Uteklimatet varierar inte bara med årstiderna utan även över dygnet. Här spelar klimatskalets värmelagringsförmåga, materialens värmeCAPacitet, stor roll. En tung byggnadskropp kan lagra värme och därmed jämna ut effetkbehovet över dygnet. Detta kan vara energieffektivt eftersom gratisvärmén från exempelvis solinstrålning lagras i konstruktionen och kan avges under den kallare natten. Förutsättningen är dock att klimatskalet är tillräckligt välisolerat, så att den lagrade värmén inte direkt ledes bort. Tillämpat i praktiken innebär detta att

\[\text{Byggnadens klimatskärm, kapitel6.3, Peterson, Studentlitteratur 2009}\]
klimatskärmens bör ha utvändig isolering och att värmelagringen sker på klimatskärmens insida.

![Diagram showing active heat storage depth in different materials during a day cycle (Hagentoft 1997)](image)

Bild 1. Aktivt värmelagingsdjup i olika material under en dygnscykel (Hagentoft 1997)

Värmelagringseffekten hos ett material är avhängigt av dess densitet; ju tyngre material desto bättre värmelagringsegenskaper. Tjockleken på den värmelagrande innerväggen ges av diagrammet ovan. En tegelvägg som är vanligt förekommande i äldre fastigheter har, enligt bild 1, ett aktivt lagringsdjup på cirka 120 mm. Motsvarande värde för exempelvis betong i ett bjäklag är 150 mm.

Ur fukthänseende kan dygnstemperaturvariationer medföra fuktrörelser både utåt och inlåt i konstruktionen. Exempelvis kan en varm tegelvägg dagtid bli uppåt 40°C vilket kan medföra kritiska värden av relativ fuktighet mot väggens insida.

På grund av temperaturskillnaderna sker alltså en energiövergång genom klimatskalet. Ekvation 1 beskriver olika sorters energiförluster genom en byggnad. Principerna för energitranport kan sammanfattas som: strålning, transmission (ledning) och konvektion (luftrörelser). De nämnda energitranportprinciperna samverkar och energi- och fuktnivåerna varierar i mycket högre grad än de ingångsvärden man normalt använder sig av vid dimensionering.

Vid vardering av energianvändningen bör man göra en heltäckande inventering av energiförlusterna och titta på VVS-lösningar, fönster, isolering, köldbryggor och användning. Jag kommer att behandla detta mera specifikt senare i fallstudien.

11 Föreläsningsbild, Jonny Kronvall, Mah 2010
12 Muntligt Fuktcentrum seminarium, Stein, Harderup Lth, Lund 091105
U-värde

För att bestämma en byggnadskomponent isoleringsförmåga beräknas värmeomforsakningseffekten som också kallas U-värdet. Om man känner till transmissionsförlusterna Q_t ges U-värdet av:

$$U_{\text{imax}} = \frac{Q_t}{A_{\text{om}} \cdot t\Delta T_{\text{m}}} \quad [\text{W/m}^2\text{K}]$$ \hspace{1cm} (3)

Q_t = transmissionsförluster
A_{om} = aktuell klimatisk area
$t\Delta T_{\text{m}}$ = antalet gradtimmar, ett mått på temperaturskillnaden mellan ute och inne

Känner man ett enskilt materialskiktets värmeledningsförmåga, λ-värde, kan värmemotståndet R beräknas enligt:

$$R_i = \frac{d_i}{\lambda_i} \quad [\text{m}^2\text{K}/\text{W}]$$ \hspace{1cm} (4)

R_i = skiktets värmemotstånd $[\text{m}^2\text{K}/\text{W}]$
d_i = skiktets tjocklek $[\text{m}]$
λ_i = skiktets värmeledningsförmåga $[\text{W/mK}]$

För ett material som består av flera homogena skikt kan ett totalt värmemotstånd beräknas enligt:

$$R_T = R_{\text{si}} + \sum R_i + R_{\text{se}} \quad [\text{m}^2\text{K}/\text{W}]$$ \hspace{1cm} (5)

R_T = totalt värmemotstånd $[\text{m}^2\text{K}/\text{W}]$
R_{si} = värmeövergångsmotstånd för ytor på insidan av konstruktionen, antas vara 0,13 $\text{m}^2\text{K}/\text{W}$
R_{se} = värmeövergångsmotstånd för ytor på utsidan av konstruktionen, antas vara 0,004 $\text{m}^2\text{K}/\text{W}$

Ett U-värde kan sedan beräknas enligt:

$$U = \frac{1}{R_T} \quad [\text{W/m}^2\text{K}]$$ \hspace{1cm} (6)

Vill man uppskatta U-värdet vid projektering görs detta enligt ekvationen nedan. Olika materials värmemotstånd ges av mätningar och finns samlade i tabeller eller hos tillverkare. För byggnadskomponenter som består av flera olika material, exempelvis en isolerad reglad vägg, beräknas U-värdet på två sätt (λ-värdesmetoden och U-värdesmetoden) och man beräknar därefter ett medelvärde, motsvarar U_i i ekvation 7.

Ett medelvärde för en byggnads U-värde, genomsnittlig värmeomforsakningseffekten U_{m}, kan beräknas och då inkluderar man köldbryggers inverkan. Köldbryggorna kan fås ur tabeller eller beräknas med beräkningsprogram exempelvis VIP+.

13 Byggnadens klimatskärm, kapitel 7, Peterson, Studentlititeratur 2009
14 http://vip.strusoft.com
\[U_m = \frac{\sum U_i \cdot A_i + \sum \psi_k \cdot l_k + \sum X_j}{A_{om}} \quad \text{[W/m}^2\text{K}] \quad \text{(7)} \]

\(U_i \) = \text{U-värdet för den aktuella byggnadsdelen}
\(A_i \) = \text{byggnadsdelen area}
\(\psi_k \) = \text{värmegenomgångskoefficient för linjära köldbryggor}
\(l_k \) = \text{längden på den linjära köldbryggan}
\(X_j \) = \text{värmegenomgångskoefficient för punktformig köldbrygga}

\(U_m \)-värdet för exempelvis ett fasadparti innehåller alltså komponenter från olika väggtyper, dörrar och fönster, men också bidragen från köldbryggor. Linjära köldbryggor är sådana som uppstår vid anslutningar mellan olika byggnadssubjekt exempelvis en takfot eller ett hörn. Punktformiga köldbryggor uppstår skärningspunkterna av de linjära.

Energiberäkningsprogram

De kanske vanligaste energiberäkningsprogrammen inom svensk byggbransch idag är Enorm\(^{15}\) och VIP+. Det senare har fler funktioner för beräkning av värdet på specifika köldbryggor. Gemensamt för båda är att ingångsvärden spelar stor roll för resultatet och att många av dessa, främst innetemperatur och tillskottsvärme, är schablonvärden vilka är svåra att verifiera.

Beräkningsfel

Att beräkna en byggnads energibehov är viktigt sett ur ett ekonomiskt och tekniskt perspektiv. För att kunna ta sig an uppgiften måste dock antaganden och generaliseringar göras. En jämförelse mellan beräknad och verklig energianvändning i några byggnader i Västra hamnen i Malmö visar på beräkningsfel på 40-60%. Här är det både frågan om fel indata, glädjekalkyper beträffande köldbryggor och inomhuslindamöter, och brister ibä beräkningsprogrammets (enorm) hantering av bland annat tillskottenergi från solinstrålning.\(^{16}\) Energiberäkningsprogram kan dock med fördel användas för att jämföra exempelvis olika konstruktionslösningar.

Gratisvärme

Gratisvärmarna i en byggnad kan som tidigare nämnts erhålls genom solinstrålning och användarnas aktiviteter. Man kan tillgodogöra sig gratisvärmen på flera sätt bland annat värmelagring i väggar, bjälklag och inredning eller värmeväxling av frånluften.

Klimatskalets U-värde spelar naturligtvis stor roll men också, som tidigare beskrivits, hur klimatskalet är uppbyggd med avseende på värmelagring. De värmelagrande materialen, oftast med hög densitet, bör vara på den uppvärmda sidan av skålet. Om konstruktionen består av en tegelstolpe, som i fallet med många äldre fastigheter, är en sådan lösning svår att uppnå om man samtidigt inte vill förändra fasadens karaktär igenom att tilläggsisolera.

\(^{15}\) http://www.equa.se/enorm/index.html
\(^{16}\) Energianvändning i nybyggda flerbostadshus på Bo01-området i Malmö, Nilsson, Lth 2003
Gratisvärmen kan också tas tillvara genom värmeväxlare och värme pumpar. Vilken VVS-lösning som väljs vid renovering beror på de befintliga systemen och på hur stor förändring man väljer att systemuppgraderingen ska medföra.

Installationer

Installationer ingår, som tidigare visats, i en byggnads energiballans på flera sätt. Energi tillförs byggnaden genom el, olika bränslen eller via fjärrvärme. Inom fastigheterna förs energin vidare genom olika medier, vanligast vatten eller luft.

I äldre fastigheter är vattenburna värmesystem vanligast. En panna eller fjärrvärmeväxlare finns ofta i källarplan vilken förser byggnadens radiatorer med värmevatten.

Ventilationssystem kan delas in i fyra huvudtyper: S-, F-, FT- och FTX-system. System med självdrag, S-system, bygger på skorstensverkan i byggnaden. Frånluftsystem, F-system, är i princip ett självdragssystem med mekanisk frånluftfläkt. För att kontrollera och förvärma tilluftflödet finns från- och tilluftsystem, FT. Ansluts en värmeväxlare kallas systemet FTX. Om man istället ansluter en värmepump som värmer vatten kallas det FVP.

Historisk utveckling om värme- och ventilationssystem¹⁷

Efter andra världskriget blev FT-system vanliga och ventilationssystemet blev gradvis inte längre en del av byggnadens konstruktion. Däremot tar ventilationssystemet större och större volym i anspråk och systemen blir efterhand allt komplicerade. Problem med för varma rum,

¹⁷ Som man bygger får man ventilera, Hjertén m.fl. Arkus 1996
speciellt rum med många elektriska apparater som i kontorslokaler, avhjälps ofta med att kyla med stora luftflöden.

Enligt ”Som man bygger får man ventila” finns det stora vinster med att bygga vidare på det existerande kanalsystemet vid en ventilationsupprgradering. Exempelvis kan högre takhöjd ge större konfort och värmen i frånluften, i fallet med ett F-system, kan återföras till värme- och tappvatten.

Allmänt om ekonomi

LCC-metod
ett vanligt sätt att värdera en investering är att tillämpa pay back-metoden. Denna går ut på att man räknar ut hur lång tid det tar för en investering att tjänas in. Begränsningarna med denna metod är att den inte tar hänsyn till investeringens livslängd, kapitalkostnader och vinstanspråk. Detta kan uppmuntra till ett kortsiktigt och likvidfokuserat agerande. 18

Kostnadseffektivitet och CEI-värde

18 Energieffektivisering av tre flerbostadshus från 50-talet, Burman, Persson, Lth 2008
19 www.energimyndigheten.se
20 Promoting energy efficiency in the private rented sector, Wilkinson, Goodacre, Property Management 2002, vol. 20, no.1, s. 49-63, Emerald MCB UP Ltd
- Tilläggsisolering av vind med 100 mm extra värmeisolering på vindsbjälklag
- Tilläggsisolering av väggar med 50 mm extra värmeisolering
- Tilläggsisolering av golv med 100 mm extra värmeisolering i golvbjälklag
- Utbyte av fönster från 1-glas- till 2-glasfönster (U-värden anges inte)
- Uppgradering av belysning genom byte till lågenergilampor
- Uppgradering av värmesystem (värmevatten- och uppvärmningssystem)

Kostnadseffektiviteten per m² golvyta av åtgärderna, benämnd Cost-effectiveness index value (CEI-värde), beräknas enligt:

\[
\text{CEI-värde} = 1000 \cdot \frac{\text{Förändring av NHER-värde}}{\text{(kostnad för åtgärden per m² golvyta)}}
\]

Med hjälp av CEI-värden kan åtgärdernas kostnadseffektivitet värderas och rangordnas. En lista med åtgärderna, var för sig och flera åtgärder tillsammans, sammanställdes av författarna:

1. Endast uppgradering av belysning
2. Endast tilläggsisolering på vind
3. Endast uppradering av värmesystem
4. Tilläggsisolering vind och uppradering av värmesystem
5. Tilläggsisolering vind, tilläggsisolering golv och uppradering av värmesystem
6. Samtliga åtgärdsförslag
7. Tilläggsisolering golv och uppradering av värmesystem
8. Tilläggsisolering golv, tilläggsisolering vind och uppradering av värmesystem
9. Tilläggsisolering vägg och uppradering av värmesystem
10. Tilläggsisolering vind, tilläggsisolering vägg, tilläggsisolering golv och uppradering av värmesystem
11. Tilläggsisolering vägg, tilläggsisolering golv och uppradering av värmesystem
12. Tilläggsisolering vind och tilläggsisolering vägg
13. Tilläggsisolering vind och tilläggsisolering golv
14. Tilläggsisolering vind, tilläggsisolering vägg och tilläggsisolering golv
15. Endast väggsisolering
16. Tilläggsisolering vägg och tilläggsisolering golv
17. Endast tilläggsisolering golv
18. Utbyte av fönster

Att jämföra resultaten i studien med kvarteret Oket inbegriper flera möjliga felkällor. De priser som gällde i Storbritannien 2002 både beträffande energi- och renoveringskostnader är svåra att kontrollera både för att de inte redovisats i materialet och av rent praktiska skäl. Vad författarna inkluderat i kostnaderna är inte heller tillfället redovisat. Åtgärderna som författarna utgår ifrån är dessutom förmodligen inte de samma som byggherren i fallet med kvarteret Oket överväger att genomföra. Exempelvis kan 100 mm tilläggsisolering på vindsbjälklag bedömas vara ganska lite och vilket slag av uppradering av värmesystem som avses i studien anges inte.

Dock ger åtgärdslistan en grov fingervisning av vad som är kostnadseffektivt vid energieffektiviseringar. Listan kommer längre fram i texten att jämföras med de åtgärder som byggherren planerat att utföra.
Objektsbeskrivning Kvarteret Oket

Kvarterets stil

Datering av huskropparna

Jag avser att främst fördjupa mig i två av Kvarteret Okets huskroppar. Dessa är 2 och 3 i figuren. Kvarterets delar är uppförda vid olika tillfällen.

Gathuset i västra hörnet av kvarteret (1) byggdes vid sekelskiftet.

Omgivande bebyggelse

Kvarteret Oket ligger vid Amiralsgatan i Malmö. Gatan tycks utgöra en gräns mellan sekelskiftes stilar i väster och modernare bebyggelse i öster. Här dominerar byggnader från 1920-1940-talet med lamellhus och storgårdskvarter i något friare form än de rektangulära rutnätsskvarteren som dominerar på Amiralsgatans västra sida, se bild 3.

21 Förfrågningsunderlag 2009-05-07, Hellqvist, SWECO 2009
22 Så byggdes staden, Björk, Nordling, Reppen, Svensk byggtjänst 2008

Bedömning av kvarteret Okets arkitektoniska stil

Den äldre delen refererar till 1890-talets Nystilar med sitt rustika tegel och med tornet i nordvästra hörnet. Burspråkens kupor och frånvaron av klassiserande ornamentik ger också byggnaden tydliga drag av Jugend.23

Bild 3: Fastigheten i kvarteret Oket (rödmarkerat) med lamellhus i sydost, storgårdskvarter i nordost och äldre runnatskvarter i väster. Bild: Hitta.se

Bild 4. Omgivande bebyggelse i 360°-vy (Kv. Oket i mitten)

23 Så byggdes staden, s. 94-97, Björk, Nordling, Reppen, Svensk byggtjänst 2008
Den del av fastigheten som stod färdig 1938, till vänster i bild 5a, har flera av funktionalismens särdrag. Den långa smala huskroppen har generöst med ljusinsläppande fönster mot söder. Fasaden är inte ornamenterad och försett med tydliga linjer och ytor som med balanserad asymmetri ger byggnaden dess moderna uttryck. 24 I byggnaden finns också väggmålningar med arbetarmotiv, se bild 5b.

![Bild 5a, 5b. Kv. Oket, fasad mot Spångatan och väggmålning (Bild av väggmålning, 5b: SWECO)](image)

![Bild 6. Kvarteret Oket fasad mot öster (i förgrunden livsmedelsaffären COOP)](image)

Kvarteret Oket läge i blickfånget vid den öppna platsen i korsningen mellan Nobelvägen och Spångatan i kombination med den tydliga årsring i stadens bebyggelse som avtecknar sig här gör kvarteret arkitekturhistoriskt intressant. Jag bedömer, med stöd av min analys, att gathuset är mera stilrent än gårdshuset varför en renovering av gathuset bör ske extra varsamt. Detta anser också Malmö stad som har infört restriktioner kring renoveringar av fastighetens fasad. 26

24 Arkitekturens historia, Gympel, Könemann Verlagsgesellschaft mbH 1998
25 Så byggdes staden, s. 104-105, Björk, Nordling, Reppen, Svensk byggtjänst 2008
26 Muntligt, Mats Ohlsson, projektledare Akelius
Byggnadernas konstruktion

Inventering och beskrivning av huskropparna

Jag kommer här att redovisa inventeringen av fastigheten med avseende på konstruktion. Fastigheten delas in i tre huskroppar vars byggnadsdelar jag sedan beskriver. Eftersom huskropparna är byggda vid olika tidpunkt är indelningen gjord med utgångspunkt i detta. Huskropp 1 ingår inte i det renoveringsprojekt som tangerar mitt arbete. Men eftersom den ansluter till och förmodligen överlappar de övriga byggnaderna analyserar jag även den i korthet.

Huskropp ett

Den äldsta huskroppen (1) är enligt min analys av fasaden byggd runt sekelskiftet. Byggnader från denna tid hade ofta en grund bestående av kallmurad sten, alltså utan cement, varpå man byggde vidare med oarmerad betong med sparsten. Dessa består av är större stenar som fungerar som ballast. Därefter fortsatte man med tegel. Tegelytterväggarna är tjocka, motsvarande två tegelstenar (2·25 cm, plus bruk och puts) längst ner, en och en halv tegelsten på mitten och en tegelsten på de översta våningarna. Bjälklagen, förmodligen i trä, ligger mellan fasad och hjärtvägg och är föranråde i yttermur och gavel med järnbeslag, så kallade ankarslutare. Vinden består av brandcellsgräns i bjälklaget av tegel eller tung kalksand. Takets konstruktion är förmodligen svensk takstol.

Huskropp två, gathuset

västra. De olika metoderna avspeglar alltså tiden för uppförandet vilket bekräftas av de olika konstruktionslösningarna i bjälklagen.

Det äldsta källarbjälklaget består av så kallade Bremervalv, vilka var vanliga i tegelhus kring sekelskiftet 27. Valven är murade i vanligt tegel och vilar på stålbalkar. Övriga bjälklag i denna del av huskroppen är nyare och är samtliga hålkroppsbjälklag, bestående av armerade betongbalkar med sparkroppar av tegel. Teglet är speciella sparkroppar vilket börjades användas runt 1920 28, se bild 8 och 10. Detta bekräftar alltså uppgifterna ovan om byggnadsår och antyder att husets västra del är byggd på samma grundläggning som huskropp ett.

I byggnadens östra del är bjälklagen gjutna i betong på stålbalkar, se bild 9 och 11. Denna metod började användas flitigt på 1940-talet och kanske har huset byggts i sektioner och ny teknik använts i det avslutande skedet.

27 Så byggdes husen 1880-2000, sidan 60, C. Björk m.fl. Svensk byggtjänst 2002
28 Så byggdes husen 1880-2000, sidan 70, C. Björk m.fl. Svensk byggtjänst 2002
I övrigt består huskropp två av traditionella tegelytterväggar som vilar på en grundläggning av betong, se bild 13. Den västra äldre delens gårdsfasad går tydligt att skilja från den nyare, främst på de murade valven över dess fönster, se bild 12.

Bjälklagen som beskrivits tidigare är fribärande och bärs upp av ytterväggarna och trapphusen. Detta innebär att samtliga innerväggar är ickebärande och sålunda byggda med varierande lätt material.

Takkonstruktionen är en låg kallvind. Denna är byggd med takstolar av trä vilka är täckta med råspont och kopparplåt. Om den femte våningen är värmesolerad framgår inte av ritningsmaterialet.
Huskropp tre, gårdshuset

Bild 14. Pelarbas från nybyggda våningsplan. (Bild: SWECO)
Bild 15. Ny vägg möter befintlig vägg. (Bild: Akelius)

Taket är av takpappklädda takelement av lättbetong (250 mm tjocka) som vilar på betongbalkar, se bild 18. På taket i byggnadens norra ända finns ett större fläktrum. Detta är byggt av stenullselement och är täckt med plåt. I söder finns ett hissmaskinrum av okänd plåtklädd konstruktion.

Sammantaget är alltså gårdshuset konstruktionsmässigt en mera mångsidig byggnad. Även stilmässigt är det mindre stilrent. Tekniker och val av konstruktionslösningar är dock tidstypiska. Det är snarast processen kring tillbyggnationerna som ger gårdshuset dess ingenjörsstiliserade karaktär, vilken här kännetecknas av att den rumsliga och estetiska gestaltningen i stor utsträckning har understälts produktionssätt.
Befintliga VVS-lösningar

Ventilationssystem

Värmesystem
Resultat

Klimatskalets byggnadsfysikaliska egenskaper och förslag på åtgärder

Massiva tegelväggar

Massiva tegelväggar, som finns i gathuset och delvis i gårdssetet, är en dåligt isolerad konstruktionslösning där anslutningen till bjälklagen dessutom utgör köldbryggor. En 400 mm massiv tegelvägg, alltså en 1½-stensvägg med 15 mm fog och 15 mm invändig puts, har enligt SWECO ett U-värde på 1,0 W/(m²K). Detta är dock ganska lågt räknat. En beräkning av väggens U-värde ger enligt ekvation (5) och (6):

\[R_T = R_{si} + \sum R_i + R_{se} \]
\[R_T = 0,13 + ((0,120+0,250)/0,7) + ((0,015+0,015)/1,0) + 0,04 = 0,729 \text{ m}^2 \text{K/W} \]

där,

\[R_{si} = 0,13 \text{ m}^2 \text{K/W} \]
\[\lambda_{puts} = 1,0 \text{ W/mK} \]
\[R_{se} = 0,04 \text{ m}^2 \text{K/W} \]
\[\lambda_{tegel} = 0,7 \text{ W/mK} \]

U-värdenet kan sedan beräknas enligt:

\[U = 1 / R_T \]
\[U = 1 / 0,688 = 1,37 \text{ W/(m}^2\text{K)} \]

Värmetrogheten hos tegelväggen är inte tillräcklig för att överbrygga dygnsvallingsvariationerna av temperaturen utomhus. Om värmetroghetens positiva effekter ska bidra till att nämnvärt minska energiförlusterna bör fasaden isoleras utvändigt med minst 100 mm isolering. Detta medför dock en stor förändring av byggnadens fasad.

Vid invändig tilläggisolering av massiva 1½-stens tegelväggar har Ann-Charlotte Anderssons avhandling ”Invändig tilläggisolering” (Lund 1979) visat att medelfukthalten i teglet generellt blir högre med invändig tilläggisolering utan ångspärr. Vintertid blir skillnaderna störst eftersom teglets temperatur blir lägre på grund av den invändig värmearmoshumlen och att uttorkningen inåt dessutom hindras. Effekten ökar med tjockleken på värmearmoshulmen. Figur 1 visar ångspärrsberäkna inverkan på en 1½-stens tegelvägg i Lund utan uppvarmaande solstrålning. I figuren ges att under vintern blir det mycket hög medelfukthalten i teglet med invändig tilläggisolering (100 mm mineralull) utan ångspärr, medan om en invändig ångspärr finns blir medelfukthalten betydligt lägre. Störst inverkan på medelfukthalten i teglet, visar Andersson, har dock utomhusklimatet, det vill säga

\[\lambda \text{-värde för massivt tegel och kalkcementbruk, enligt Tillämpad byggfysik, Petersson, Studentlitteratur 2007} \]
\[\text{Värmelagring i byggnader, Nilsson, Vendel, Karlstads universitet, 2008} \]
utomhustemperatur, luftfuktighet, och mängden slagregn och solstrålning. Det samma gäller för teglets torktid efter slagregn.

Figur 1. Medelfuktighetens variation i en 1½-stens tegelvägg i Lund med och utan invändig tilläggsisolering samt utan solstrålning. Fukttilskottet inomhus 3·10⁻³ kg/m³. (Bild: A-C Andersson, Lund 1979)

Risk för kondensutfällning i mellan tegel och värmeisoleringen bör bedömas som stor vintertid i fallet med värmeisolering utan ångspärr. Detta framgår av figur 2 som visar ett snitt av tegelväggen. Väggens insida är till höger och W₁₀₀ motsvarar RH 100 % för tegel. ³²

Figur 2. Fuktfordelnings i en 1½-stens tegelvägg i Lund med och utan invändig tilläggsisolering samt utan solstrålning. Fukttilskottet inomhus 3·10⁻³ kg/m³. 1.9 och 1.12 motsvarar 1 september och 1 december. (Bild: A-C Andersson, Lund 1979)

Slutsatsen som kan dras är att invändig värmeisolering av massiva tegelväggar bör förses med invändig ångspärr och att osäkerhet råder kring tjockleken av den invändiga värmeisoleringen. 100-150 mm värmeisolering bedöms dock vara relativt riskfritt. Vid extremsituationer, som exempelvis kraftigt ihållande slagregn vintertid, finns risk för att tegelskiktets insida blir våt. För att minimerar riskerna för mögel och röta bör organiskt material undvikas. Vid utförandet bör därför tegelväggens insida göras ren från tapetrester med mera och stålreglar eller oorgansiskt lim bör användas vid montering av värmeisoleringen.

³² Invändig tilläggsisolering -köldbryggor, fukt, rörelser och beständighet, A-C Andersson, Lth 1979
Det plåtklädda våningsplanet

Utfackningsväggar
Utfackningsväggarna är som tidigare nämnts utvändigt försedda med luftspalt och fasadtegel. Innanförliggande isolering är också här relativt dålig men kan kompletteras med ytterligare isolering med ångspärr. Den befintliga utfackningsväggens beräknade U-värde är cirka 0,45 W/(m²K).

Lättbetongtak

Invändig isolering som ligger an mot yttertaket är också en riskkonstruktion både med avseende på risken för läckage utifrån och kondensbildning inifrån. Taket förses med vatten- och diffusionstäthet beläggning följd av betongtak och isolering. Lättbetongen måste även här kunna torka inåt. Detta är svårare än i fallet med utvändig isolering då betongen är kallare.

Om man däremot betraktar takkonstruktionen som en kallvind så kan ett isolerat vindsbjälklag byggas och kallvinden ventileras. Om organiska material används kan man betrakta konstruktionen som relativt riskfri, då det befintliga yttertaket även det är av organiskt material i form av lättbetong.

Fönster och ytterdörrar
Fastighetens fönster idag är de ursprungliga med undantag för en del fönster i gårdshuset som tidigare bytts ut av bullerskäld. De ursprungliga fönstren är tvåglasfönster med båge och ram i trä. Några uppgifter på U-värde finns inte att tillgå men ett sannolikt U-värde på cirka 3.0
Byggnadens ytterdörrar är i många fall bytta och av skilda slag. De har i många fall karaktären av inbrottsskydd, se bild 22. SWECO uppskattar en genomsnittlig ytterdörrs U-värde till 1.0. Samtliga öppningar finns i massiva tegelväggar. Den äldsta delen avväxlas med murade valv övriga har sannolikt inmurad armering.

Renoveringsåtgärder i fastigheten

Allmänt

Byggnadernas renoveringsbehov

Nya funktioner

Länsstyrelsen har framfört krav på att grönytor och uteplatser ska anläggas på tomten. Detta har efter förhandlingar resulterat i att man bygger en upphöjd uteplats på gården, som handikappanpassas med hiss, och en på gårdsområdets tak. Växter planteras vid uteplatserna, på gården och på delar av innergårdens fasader.

33 Tillämpad byggfysik s 486, Petersson, Studentlitteratur 2007
Energieffektiviserande åtgärder

Det nya ventilationssystemet är av typen FTX det vill säga från- och tilluft med värmeväxlar. Två fläktrum, ett stort på gårdshuset och ett i gathuset, används innehållande tre anläggningar. Äldreboendet och studentlägenheterna betjänas av var sin anläggning utrustad med en plattvärmeväxlar med en verkningsgrad på 50-60 %. Gymmet får en egen anläggning med rotationsvärmeväxlar med en verkningsgrad på 75-90 % och en kylanläggning för komfortkyla. Eftersom gymmet kommer att användas flitigt, och därmed ha relativt stort kylbehov, förs diskussioner om att ta tillvara värmen från kylanläggningen till att värma tappvatten. Man diskuterar även om att vintertid använda den kalla uteluften, så kallad frikyla, för att kyla ner mediet i kylsystemet. Incitamentet är som alltid, enligt Göran Andersson installationsledare på NCC, ekonomiskt. Investeringen i fastighetens nya ventilationssystem bedömer han har en pay off-tid på cirka 3-5 år.

Klimatskalet isolerande förmåga förbättras genom att byta till fönster med U-värden på cirka 1,2 W/(m²K). Yttertaket i gathuset kommer att förses med ett isolerat vindsbjälklag.

34 Muntligt Göran Andersson, installationsledare, NCC
35 Muntligt Anders Thonäng, platschef, NCC
Enligt NCC kommer fastigheten att klara energikraven med god marginal. En orsak till de låga värdena är av beräknings- teknisk natur. I projekteringen utgår man från att gymnet kommer att ha lokaler i källaren, i form av spinningsalar. Detta innebär att dessa lokaler inkluderas i den uppvärmda golvarea, A_{temp}. Källarväggar på en till två meter under mark har ett värmemotstånd på $K_{\text{källarvägg 1-2m}} = 1,7 \text{ m}^2\text{K/W}$, vilket enligt ekvation 6 motsvarar ett U-värde på $U_{\text{källarvägg 1-2m}} = 0,59 \text{ W/m}^2\text{K}$. Motsvarande för källargolvet är $U_{\text{källargolvet}} = 0,29 \text{ W/m}^2\text{K}$. Dessa U-värden är väsentligt bättre än exempelvis de massiva tegelväggarnas även om värdena är sämre kraven omslutande byggnadsdelar, $U_{\text{vägg}} = 0,185 \text{ W/m}^2\text{K}$. Dessutom har källarvägga mycket liten fönsterarea. Tillskottsvärmens från spinnningen kan också tillgodoräknas. Den beräkningsgrundade arean blir alltså större, U_{m} sänks och tillskottenergin ökas.

Att byggnaden kan klara kraven i BBR16 med avseende på U_{m}-värde är orimligt. Däremot klarar byggnaden enligt NCC kraven med avseende på energianvändning. Med råden om varsamhet som finns beskrivna i BÄR bör dock kvarteret Oket klara gällande regler väl.

Det planerade energisystemet registrerar energidata från fjärrvärmeleverantör och elleverantör. Någon intern insamling av data som avser energitåg som kommer sannolikt inte att äga rum.

Kvalitativa resonemang kring resultaten

Energi och ekonomi

Enligt Göran Andersson på NCC gick det att uppfylla gällande regler kring energianvändning, detta utan att göra några större förändringar av kvarteret Okets exteriör.

36 Tillämpad byggfysik, Petersson, Studentlitteratur 2007
Incitament för energieffektiviseringar hos användarna

Utvecklingen av energisystem går, enligt Göran Andersson på NCC, i riktning mot ökad förfinning av styrt- och regleringstekniker. Framför allt kommer utbudet av avläsningsapparatur att öka i och med att krav ställs i BBR om att kunna specificera energianvändningen inom fastigheten. Detta ger fastighetsägaren möjlighet att låta varje hyresgäst stå för sin egen energikostnad. Försök med individuell debitering hos bland andra Växjöhem i Växjö har visat att en sådan lösning kan spara 10-20 % av den ursprungliga energianvändningen. För att mätutrustningen som har en avskrivningstid, det vill säga bör vara intjänad, på 10 år måste, för en normallägenhet på 65 m², energieffektiviseringen vara 20 % eller mer. Med ett i undersökningen uppskattat fast energipris på 0,80 kr/kWh anser man denna lösning inte lönsam. En avgörande faktor för lönsamheten är alltså prisutvecklingen på energi och till viss del priset på mätutrustning.

I processen kring renoveringen av kvarteret Oket diskuteras att införa individuell debitering framför allt gentemot gymmet som försörjs med komfortkyla. Några resultat kan i dagsläget dock inte utläsas.

Byggnadsvård

Syftet med uppsatsen är bland annat att beskriva olika energieffektiviserande lösningar för fastigheten som samtidigt beaktar byggnadsvårdsaspekten. Efter att ha intervjuat representanter för fastighetsägaren, projektör och entreprenör framträder en entydig bild av incitamenten i fastighetsbranschen; krav och ekonomi. Resonomang kring en byggnads attraktionsvärde på grund av dess autentiska intryck, eller byggnadsvård som egenvärde, förekommer inte alls mellan parterna i projekteringen av kvarteret Oket. Man hänvisar till krav från kommunens stadsbyggnadskontor som enda motiv till byggnadsvårdsåtgärder. Det framstår alltså som att en förutsättning för att en byggnads karaktär ska kunna bevaras i samband med en renovering är en aktiv, kunnig och engagerad myndighet.

Bild 22. Dörr i gathuset

37 Individuell mätning och debitering i flerbostadshus, s. 47, Boverket 2008
Avslutande diskussion

I uppsatsen har beskrivits hur kvarteret Oket renoveras och uppfyller dagens krav på energianvändning med ett i princip bevarat arkitektoniskt uttryck. Beslutsprocessen styrs av tekniska argument, som väggskikt och U-värden, ekonomiska incitament och regelverk. Uppsatsen har argumenterat för att bäst resultat nås med tydliga och högt ställda krav från myndigheter, i kombination med långsiktigt engagerade och kompetenta byggherrar. I fallet med kvarteret Oket valdes de tekniska lösningarna utifrån förutsättningarna som gavs av kraven från myndigheter och investeringsåterbetalningstid.

I projekteringen av kvarteret Oket finns byggnadsvårdsperspektivet mest närvarande som myndighetskrav. De allmänna råd och krav som finns formulerade i BÄR, Allmänna råd om ändring av byggnad, var enligt mig inte prioriterade internt i byggeprocessen. Hur myndighetskrav formuleras, på vilka grunder och hur myndighetsstyrningen ser ut kunde ha ingått i arbetet. Uppsatsen kunde också ha kompletterats med att undersöka möjligheter till myndighetsstyrning av projekteringen eller villkorade subventioner av krediter. Vidare kan fler aktörer intervjuas för att få en mera nyanserad bild av hur fastighetsbranschen hanterar arkitekturhistoriska värden.

Det skulle också vara intressant att utföra byggnadsvårdsspecifik beräkningar av de av mig föreslagna åtgärderna. Förslagen kunde också ha genomgått en ekonomisk prövning.
Källor

Litteratur

Individuell mätning och debitering i flerbostadshus, Boverket 2008

Muntliga källor

Hellkvist Johan, konstruktör på SWECO, september, oktober 2009

Olsson Mats, projektledare på Akelius, 12 mars, 2010

Andersson Göran installationsledare på NCC, 9 april, 2010

Thonäng Anders, platschef på NCC, kvarteret Oket, 16 april, 2010

Fuktcentrum seminarium, Lund, 5 november, 2009

Kronvall Jonny, föreläsning Malmö högskola, Byggprojektet VT 2010

Internet

http://boverket.se/

http://sv.wikipedia.org/wiki/Betongelement

http://www.energimyndigheten.se

http://vip.strusoft.com

http://www.equa.se/enorm/index.html

Övrigt

Ritningar och diverse handlingar, Johan Hellkvist, konstruktör på SWECO