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We report on the first theoretical investigation of MF-dependent lifetimes due to interference between a
magnetic octupole transition and a hyperfine induced electric quadrupole transition. Extensive multi-
configuration Dirac-Fock calculations are used to model the hyperfine quenching of the magnetic octupole
decay of 3d94s 3D3 and the state mixing between the 3D3 and 3D2 due to hyperfine interaction in nickel-
like Xe26�.
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Forbidden transitions provide fundamental information
about atomic structure and are important tools for diag-
nostics and modeling of astrophysical and laboratory plas-
mas. In this Letter we focus on a magnetic octupole
transition (M3) and an electric quadrupole transition (E2)
to investigate the effect of hyperfine quenching on the
lifetime of the 3D3 metastable level in nickel-like Xe26�.

In nickel-like ions, the ground state and first ex-
cited states are 3d10 1S and 3d94s 1;3D, outside a
1s22s22p63s23p6 core. The lowest excited level 3D3 can
decay to the ground state only via an M3 transition, while
the decays of the two J � 2 levels are dominated by E2
transitions (see Fig. 1). There are extensive theoretical
[1,2] and experimental [3–8] investigations of nickel-like
ions. However, very few studies, either theoretical or ex-
perimental, have dealt with the more ‘‘exotic’’M3 decay. It
was first reported in the x-ray region of the spectra of the
highly charged ions Th62� and U64� [9] at the LLNL EBIT,
followed by a theoretical investigation by Biémont et al.
[10]. Recently, Träbert et al. [11] did a more detailed
investigation of the 3D3 in nickel-like xenon, reporting a
lifetime of 11:5� 0:5 ms. This is about 20%–60% shorter
than the theoretical results in the same publication, using
an average level multiconfiguration Dirac-Fock (MCDF)
method, and the results by Safronova et al. [12] and Träbert
et al. [13], using a many-body perturbation theory
(MBPT). The 3D3 lifetime studies of Cs27� and Ba28�

were reported also in [11]. The measured lifetimes in the
latter two cases, 8:2� 2:0 ms and 4:3� 3:6 ms, respec-
tively, have larger error bars. These measurements are
more than 60% shorter than what has so far been predicted
by theory [12,13]. We suggest that these discrepancies are
due to the hyperfine induced state mixing between the 3D3

and 3D2 levels, opening a new decay process. We also
propose for the first time that the interference between
the M3 transition and the hyperfine induced E2 transition
results in lifetimes which are dependent on the magnetic
quantum number of the initial level. Our arguments are
supported by large-scale MCDF calculations and by simu-

lations of the resulting complex 3D3 decay by one-
exponential fitting.

The basic ideas behind hyperfine quenching is that in the
presence of a nuclear spin I, an additional hyperfine op-
erator Hhpf is introduced into the otherwise electronic
Hamiltonian. This Hamiltonian commutes with the total
angular moment F�� J� I� and Fz, instead of the total
electronic angular moment J and Jz. This hyperfine inter-
action therefore not only splits J levels, but also introduces
a wave function mixing between levels of different J [14].
An experimental indication of hyperfine quenching was
reported by Gould et al. [15]. The mixing can be repre-
sented as

 j“�JIF”i � j�0J0IFi �
X
i

�ij�iJiIFi; (1)

where � denotes all other quantum numbers needed to
completely specify the state, and the main contribution
represents the ‘‘pure’’ state j�0J0IFi, in the absence of
the hyperfine interaction. According to first order pertur-
bation theory, the mixing coefficient can be computed as

 �i �
h�iJiIFMFjHhpfj�0J0IFMFi

E��0J0� � E��iJi�
: (2)

FIG. 1. Schemes of the ground level 3d10 1S0 and first excited
levels 3d94s 1;3D in Ni-like ions. The main decays involved are
also given. LS term designation is used.
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In this Letter we will consider only the most important
contribution to the hyperfine interaction, the magnetic
dipole interaction, which will mix different J levels only
with an angular moment difference �J � 1. Since the
significant contributions will come only from within the
same configuration, this interaction will mix the 3D3 level
only with J � 2 levels of the same parity and then open a
new decay process for the impure ‘‘3D3’’ state besides its
own M3 transition. Since the E2 transition rates,
A�1S0-3D2� and A�1S0-1D2�, involved here are more than
6 orders of magnitude larger than the M3 transition rate, it
is clear that even a very small state mixing will cause
significant influence on the lifetime of the 3D3 level. Our

calculation shows that the hyperfine induced mixing of 3D3
with 1D2 is over 2 orders of magnitudes lower than that
with 3D2, so it can be neglected. The mixing between 3D2
and 1D2 is already included in relativistic calculation. The
mixing of the ‘‘3d94s 3D3’’ state can then be written as

 j“�0
3D3IF”i � j�0

3D3IFi � �j�
3D2IFi: (3)

Normally a transition rate is proportional to the square of
the reduced transition matrix element, with coefficients
Kp;k;� depending on the type p, order k, and wavelength
� of the transition. The transition rate of a specific FMF
sublevel in the mixed ‘‘3D3’’ to all the M0F sublevels of
ground state j�01S0IF

0i can then be expressed as

 A�F;MF� �
X
M0F;q

jh�01S0IF
0M0Fj

�������������
K0M;3;�

q
M�3�q �

������������
K0E;2;�

q
E�2�q j“�0

3D3IFMF”ij2

� KM;3;�h�
01S0kM

�3�k�0
3D3i

2 � �2 	 KE;2;�h�
01S0kE

�2�k�3D2i
2 � 2��2F� 1�



�������������������������
KM;3;�KE;2;�

p
h�01S0kM

�3�k�0
3D3ih�

01S0kE
�2�k�3D2i

X
M0F;q

I 3 F
�M0F q MF

� �
I 2 F
�M0F q MF

� �
; (4)

where K0 � �2J� 1�K. In this expression, the first term on
the rightmost side represents the pure M3 transition rate
A�M3�. The second term represents the hyperfine induced
E2 transition rate �2A�E2�, which is F dependent due to the
F-dependent mixing coefficient �. The last term is the
interference term A�inter� between the M3 and the hyper-
fine induced E2 transition. In this case, when the A�M3�
and �2A�E2� are comparable in size, the interference term
cannot be neglected. Since the sum of the product of two
3-j symbols depends on MF, the total transition rate
A�F;MF� will be MF dependent.

We use the GRASPVU package, a modified version of
GRASP92 [16], which is based on the fully relativistic
MCDF method [17] to determine transition rates and en-
ergies. In the MCDF method, the atom is represented by an
atomic state function ���J�, a linear combination of con-
figuration state functions (CSFs) ���iJ�, ���J� �P
ici���iJ�. The CSFs are constructed from the sum

of products of one-electron spin orbitals. The coeffi-
cient ci and spin orbitals are optimized by minimizing an
energy functional according to the self-consistent field
method.

We use a restricted active space approach [18], which is
based on the active set (AS) [19,20] of orbitals, to include
correlations. In this approach, the active set is increased in
a systematic way. Considering the relative importance of
different excitations from the viewpoint of order-by-order
expansion of energy in perturbation theory [21], we al-
lowed single and double replacements from the reference
configuration to an active set. Valence correlation and core-
valence correlation are both included in the calculation. In
the first step of our calculation, which we label Dirac-Fock
(DF) in Table I, all orbitals of 3d10 and 3d94s are optimized
in independent extended average calculations [17]. In the
second step, we include single excitation from the 3s and
3p subshells, and single and double excitations from the 3d
and 4s subshells, to the active set AS1 � f4s; 4p; 4d; 4fg.
Only the orbitals added in this step are optimized. In the
third step, the same excitations are allowed to the active set
AS2 � AS1� f5s; 5p; 5d; 5fg, followed by optimization
of the new orbitals. In the fourth step, in addition to the
excitations in the previous step, single and double excita-
tions from 3d and 4s are allowed to the active set AS3 �
AS2� f6s; 6p; 6d; 6fg. Finally, single s-electron excita-

TABLE I. Xe26� excitation energies (in cm�1) from different calculations (see text) and experiment.

Method 3D3
3D2

3D1
1D2

This work

DF 4 757 839 4 766 207 4 869 177 4 875 505
AS1 4 765 543 4 774 172 4 873 759 4 880 026
AS2 4 758 245 4 766 993 4 866 560 4 872 984
AS3 4 757 727 4 766 513 4 866 033 4 872 502
AS4 4 757 588 4 766 359 4 865 900 4 872 355

[12] MBPT 4 758 506 4 766 899 4 866 417 4 873 769
[11] MCDF 4 749 680 4 758 520 4 861 113 4 868 001
[11] Experiment 4 761 859 4 770 247 4 876 308
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tions from the reference configurations to the active sets
AS4 � f4s; 5s; 6s; 7s; 8sg are included, to take care of the
main contribution from the spin polarization effect [22,23].
The resulting expansion is over 79 363 CSFs. In this last
step, only the 7s and 8s orbitals are optimized. In the final
configuration interaction calculation, we add transverse
photon contributions, vacuum polarization, and normal
and specific mass shifts to the Dirac-Coulomb Hamilton-
ian as perturbations.

Table I presents the transition energies calculated in this
work at different configuration expansions, along with

those from other calculations and the experiment. The
computed transition energies in this work are consistently
smaller than the experimental results by about 4000 cm�1,
due to the slower convergence of correlation in the ground
state. But this is less than 0.1% of the excitation energy.
More importantly, our ‘‘fine structure’’ energy splittings
E�3D2�-E�

3D3� � 8771 cm�1 and E�1D2�-E�
3D3� �

114 767 cm�1 are in excellent agreement with the experi-
mental values. It is clear from Eq. (2) that this energy
splitting is most important for computing hyperfine
quenching. The transition rates are shown in Table II. For

TABLE II. Computed transition rates (without hyperfine quenching) in Xe26� (s�1). For the two E2 transitions (from 3D2 and 1D2
states), results from both Coulomb and Babushkin (in brackets) gauges are presented.

Method 3D3
3D2

3D1
1D2

This work
AS1 62.90 2:58�2:62� 
 108 80.45 2:36�2:39� 
 108

AS2 64.93 2:63�2:65� 
 108 94.91 2:40�2:41� 
 108

AS3 66.20 2:65�2:67� 
 108 90.44 2:41�2:43� 
 108

AS4 66.15 2:65�2:67� 
 108 94.12 2:41�2:43� 
 108

[11] MCDF 71.30 2:72
 108 89.20 2:49
 108

[12] MBPT 53.70 2:26
 108 136.0 2:06
 108

TABLE III. Contribution to the MF-dependent rates A�s�1� for the 3d10 1S0 —‘‘3d94s 3D3’’ transition [according to Eq. (4)] and the
final lifetime of ‘‘3D3’’ sublevels of Xe26�.

Isotope I F MF A�M3� �2A�E2� A�inter� A�F;MF� ��ms�

This work Xe Even isotopes 66.15 0.0 0.0 66.15 15.12
129Xe 1=2 7=2 66.15 0.0 0.0 66.15 15.12

5=2 �5=2 66.15 286.34 �104:04 248.45 4.02
�3=2 66.15 286.34 �27:56 324.93 3.08
�1=2 66.15 286.34 �7:98 344.51 2.90
�1=2 66.15 286.34 7.98 360.47 2.77
�3=2 66.15 286.34 27.56 380.05 2.63
�5=2 66.15 286.34 104.04 456.53 2.19

131Xe 3=2 9=2 66.15 0.0 0.0 66.15 15.12
7=2 �7=2 66.15 96.36 92.19 254.70 3.93

�5=2 66.15 96.36 43.78 206.30 4.85
�3=2 66.15 96.36 19.39 181.90 5.50
�1=2 66.15 96.36 5.51 168.02 5.95
�1=2 66.15 96.36 �5:51 157.00 6.37
�3=2 66.15 96.36 �19:39 143.12 6.99
�5=2 66.15 96.36 �43:78 118.73 8.42
�7=2 66.15 96.36 �92:19 70.32 14.22

5=2 �5=2 66.15 92.53 104.22 262.90 3.80
�3=2 66.15 92.53 44.27 202.95 4.93
�1=2 66.15 92.53 10.15 168.83 5.92
�1=2 66.15 92.53 �10:15 148.53 6.73
�3=2 66.15 92.53 �44:27 114.41 8.74
�5=2 66.15 92.53 �104:22 54.46 18.36

3=2 �3=2 66.15 45.95 69.19 181.29 5.52
�1=2 66.15 45.95 11.31 123.41 8.10
�1=2 66.15 45.95 �11:31 100.80 9.92
�3=2 66.15 45.95 �69:19 42.91 23.30

Fitted lifetime: 11.80 ms (population I) 11.85 ms (population II) 11.65 ms (population III)

Experiment[11] 87� 4 11:5� 0:5
Theory [11] 71.30 14.03
Theory[12] 53.70 18.62
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the two electric quadrupole transitions (3d10 1S0 —3d94s
3D2 and 3d10 1S0 —3d94s 1D2), both Coulomb and
Babushkin gauges are given; they are in excellent agree-
ment. All the transition rates, except the M1 transition
which is not important in this discussion, change by less
than 5% when correlation is included. Both energy and
transition results are converged and give us confidence that
the main correlations are included.

The hyperfine interaction was included as a perturbation
after the MCDF calculations using the program HFSVU, a
modified version of HFS92 [24], to compute the mixed
atomic wave function of j“� 3D3IFMF”i. Our calculation
shows that the matrix element in Eq. (2) for hyperfine
interaction between 3D3 and 1D2 is about 1=10 of that
between 3D3 and 3D2; the energy splitting is more than 10
times larger than that between the latter, so the mixing
coefficient ��1D2� is about 2 orders of magnitude smaller
than ��3D2�. While their transition rates are comparable,
the contribution from 1D2 to the 3D3 decay is negligible
compared to that from 3D2. An overview of the
MF-dependent transition rate and lifetime for each indi-
vidual sublevel along with our simulated lifetime results
and previous results are shown in Table III. For the isotopes
with zero nuclear spin, only the M3 transition can occur. It
is clear that the MF dependence is introduced by the non-
zero interference term between the M3 transition and the
hyperfine induced E2 transition. It is worth noting that the
MF dependent lifetimes span over a wide range. The
superposition of these decays will lead to a multiexponen-
tial behavior in the decay of the composite ‘‘3D3’’ level.
This can be expressed as

 I�t� � I0

X
i;F;MF

WiWi;F;MF
exp��t=��i; F;MF��; (5)

where I0, Wi, and Wi;F;MF
represent the initial intensity,

isotope abundance, and the weight of sublevel population
in a given isotope. For the natural abundance of xenon, we
composed three synthetic decay curves based on expres-
sion (5) assuming three extreme populations: (I) a uniform
population on the MF sublevels, (II) an increasing popula-
tion along MF, jMFjf�F� on an MF sublevel, and (III) a
decreasing population �F� 1� jMFj�f�F�, to estimate
any polarization effect. f�F� is an F-dependent normaliza-
tion coefficient. Fitting the synthetic decay curves with
single exponential leads to lifetimes of 11.80, 11.85, and
11.65 ms, respectively, corresponding to the three above
mentioned population assumptions; see Table III. Our
results agree much better with the experiment results
11:5� 0:5 ms [11] compared to the previous calculations
[11,12]. This supports our proposal that the interference
between the M3 transition and the hyperfine induced E2
transition plays an important role in the decay of the ‘‘3D3’’
level in Xe26�. Furthermore, the different lifetimes de-
duced from the three assumptions show the effect of po-
larization on MF sublevel populations. The lifetime value
of 11.65 ms is closest to the experimental value [11],
possibly implying that the decreasing population is closest

to the real distribution under the experiment condition in
[11]. We suggest an experiment on the lifetime of the
‘‘3D3’’ of a pure xenon isotope with nonzero nuclear
spin, in which case the polarization effect would show
more influence on the lifetime.

In conclusion, the excited level 3d94s 3D3 in nickel-like
xenon was investigated using MCDF with inclusion of the
hyperfine interaction. For the first time, it is proposed that
not only the mixing of the level of 3D3 with 3D2 by the
hyperfine interaction but also the interference between the
M3 and the hyperfine induced E2 transitions, which gives
rise to MF dependent sublevel lifetime, is important for the
‘‘3D3’’ level decay. This provides a possibility to study the
polarization by measuring level lifetimes. This could be
another useful tool for plasma condition diagnostics.
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