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Abstract

We present the Transportation And Production Agent-based Simulator (TAPAS), which is an agent-based model for
simulation of transport chains that can be used, e.g., for analysis of transport-related policy and infrastructure measures.
TAPAS is more powerful than traditional approaches to freight transport analysis, as it explicitly models production
and customer demand, and it captures the interaction between individual transport chain actors, their heterogeneity
and decision making processes, as well as time aspects. Whereas traditional approaches rely on assumed statistical
correlation, TAPAS relies on causality, i.e., the focus is on the decisions and negotiations that lead to activities. TAPAS
is composed of two connected layers, one that simulates the physical activities, e.g., production and transportation,and
one that simulates the decision making and interaction between actors. We illustrate TAPAS with a scenario in which
the consequences of three transport policy and infrastructure measures are studied.

Keywords:Multi-agent-based simulation, Multi-agent systems, Transport chain simulation, Freight transportation,
Decision-making

1 Introduction

Freight transportation causes different types of positive and negative effects on the society. Positive effects typically
relate to economy and social welfare, e.g., due to the possibility to consume products that have been produced far away.
Negative effects mainly relate to the environment, and typical examplesare emissions, congestion and energy use. By
applying different types of governmental control policies, infrastructure investments and strategic business strategies,
it is sometimes possible to influence how transportation andother activities in transport chains are performed. Control
policies include different types of taxes and fees, such as kilometer and fuel taxes, and regulations, such as weight
restrictions on vehicles. Infrastructure investments canbe made into roads, railway tracks, intermodal freight terminals,
industry tracks, etc., and examples of strategic business measures are improvement of timetables and adjustment of
vehicle fleets to better meet the demand for transport. Public authorities, in the role of policy makers, often have a wish
to reach certain governmental goals, such as obtaining sustainable transport systems and meeting emission targets. A
typical ambition of a public authority is to increase the internalization of external costs, e.g., by letting road userspay
for the road wear they cause (Button, 1997). However, internalization of external costs may have effects that might be
negative on other goals. For instance, it might lead to negative economic development in a region. For enterprises, the
goal is typically to maximize profit, e.g., through optimization of their activities (either individually or in collaboration),
by reducing lead-times, lowering transport costs, improving delivery accuracy, etc. To avoid undesired consequences
and to confirm desired consequences it is important to be ableto accurately predict what the consequences will be when
applying different types of measures.

Multi-Agent-Based Simulation (MABS), in which one or more of the simulated entities are modeled as agents,
can be used for studying freight transport systems. An agentcan be viewed as a system that is situated in some
environment and capable of autonomous action in that environment in order to meet its design objectives (Wooldridge
and Jennings, 1995). We present the Transportation And Production Agent-based Simulator (TAPAS), which is a micro-
level model for quantitative impact assessment of, e.g., different types of transport-related policy and infrastructure
measures. In TAPAS, which is based on agent technology, the individual actors of a transport chain, e.g., producers,
transport operators and customers, are explicitly modeled. TAPAS incorporates the complexity of transport choices,
e.g., with respect to consignment size, and route and transport mode. In addition, TAPAS is able to take into account
time aspects, such as, the effects of timetables, arrival times, and time-differentiated taxes and fees. This makes TAPAS
more powerful than traditional approaches to freight transport simulation as it is able to capture the individual goalsof
transport chain actors and the interaction between them, aswell as their heterogeneity and decision making. Whereas
traditional approaches rely on assumed statistical correlation between different parameters, TAPAS relies on causality,
i.e., the decisions and negotiations that lead to activities are modeled.
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The main application area for TAPAS is to provide decision support to public policy makers by enabling analysis
of, e.g., different types of transport-related policy and infrastructure measures. Other possible applications of TAPAS
include assisting companies in making tactical and operational decisions, e.g., concerning choice of consignment size
and frequency of deliveries, as well as strategic decisions, e.g., concerning choice of producer, adaptation of vehicle
fleets, and location of storages and terminals. Moreover, weargue that TAPAS may complement existing approaches
(e.g., on the macro-level) in different ways, e.g., by generating transport demand that may serve as input data to other
models.

The research concerning TAPAS has been going on for several years, and the work has rendered a number of
conference publications (e.g., Bergkvist et al., 2005; Holmgren et al., 2007; Ramstedt et al., 2007; Davidsson et al.,
2008). This paper extends the previous work by providing a more detailed technical description and better motivation
of the design of the TAPAS simulation model. Also, TAPAS has been extended with new functionality, e.g., load
consolidation for demand driven transports has been added,and the model for setting transport prices has been improved.

In the next section we discuss some related work, followed inSection 3 by a detailed description and motivation of
the TAPAS simulation model, including an account to the implementation of TAPAS. In Section 4 we illustrate some
important functionalities provided by TAPAS by presentinga simulation study that has been conducted using TAPAS.
Finally, in Section 5 and Section 6, we conclude the paper with a discussion and some suggestions for future work.

2 Related work
In this paper we present TAPAS, which is an agent-based simulation model that can be used, e.g., for impact

assessment of transport-related policy and infrastructure measures and evaluation of different types of strategic business
strategies. TAPAS is best described as a transport chain simulator, which has been extended with functionality for
simulating production. In TAPAS, transportation is modeled in more detail than production, and it only considers a
single-tier of the supply chain. Therefore, TAPAS mainly relates to the transport domain, and only partially to the more
production-focused supply chain domain. Hence, the work behind TAPAS can be regarded as multi-disciplinary, and
we will in this section cover several domains. We focus on research related to freight transport analysis and we also pay
some attention to research related to supply chain modeling, focusing on agent-based supply chain models. It should
be mentioned that the focus of this section is to give an overview of relevant work, not to conduct a complete literature
review since reviews in relevant domains already exist. Forinstance, Terzi and Cavalieri (2004) contributed with a
review focusing on parallel and distributed supply chain simulation. In the transport modeling domain, several reviews
exist (e.g., Chow et al., 2010; de Jong et al., 2004; Tavasszy, 2006), and Friedrich and Liedtke (2009) provided a review
of current transport modeling literature focusing on two agent-based models.

TAPAS simulates freight transportation, where the focus ison the freight flows and its allocation to vehicles, and
models with this focus is often called commodity flow based models. Another related type of model is tour-based
models, which instead focus on vehicle movements, i.e., thefocus is on tours in which vehicles often start and end
in the same location. An example of a tour-based model is the Calgary model presented by Hunt and Stefan (2007).
Tour-based models are more often used when the geographicalfocus is regional or urban, while commodity flow based
models often have a national or international focus.

Traditionally, freight transportation has been studied using macro-level (or equation-based) models, such as Sam-
gods (Swahn, 2001), ASTRA (Shade et al., 1999) and SISD (Williams and Raha, 2002). Models of this type take a so-
cietal perspective and are based on aggregated coarse-grained data on national or regional levels, and different countries
typically use their own models. Moreover, such models are commonly based on the aggregate and sequential four-step
approach. Models based on this approach include one or several sub-models that can be described using four steps;
production & attraction (trip generation), trip distribution, modal choice, and aggregation (de Jong et al., 2004). Models
based on the four-step approach can look rather different, and different steps are typically represented by different types
of sub-models, such as system dynamics models (e.g., ASTRA (Shade et al., 1999)), and economic models such as I/O
models (e.g., Samgods (Swahn, 2001)) and gravity models (e.g., NEAC (Chen and Tardieu, 2000)). An overview of
models based on the four-step approach is provided in (de Jong et al., 2004). Further, sometimes more than one step is
represented within the same sub-model, such as in Samgods (Swahn, 2001), in which modal choice and assignment is
integrated. An issue with traditional aggregate sequential models is that they do not take the logistical processes into
account, e.g., choices of carrier type and ordering strategies, and thus fail to model the level where decisions regarding
the actual transports take place. Starting about a decade ago, several aggregate sequential models, which also take
logistical aspects into consideration, have been developed. Such models are for example SLAM (Williams and Raha,
2002), SMILE (Tavasszy et al., 1998), GoodTrip (Boerkamps and van Binsbergen, 1999), and the model suggested by
de Jong and Ben-Akiva (2007), and they typically make use of disaggregation of aggregate data. However, since these
models do not represent individual transport chain actors,the complex interactions (e.g., negotiation) and the decision
making processes from which transport plans result are impossible to capture. Moreover, these models can only capture
average times, but typically no aspects related to dynamic time (e.g., timetabled transportation), which is crucial when
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logistical decisions are coordinated. The decision makingin supply chains is subject to both short-term and long-term
planning implying that the time dimension of the decisions needs to be considered.

We argue that more precise predictions regarding the effects of transport-related policy and infrastructure measures,
and strategic business measures, can be achieved by using micro-level, and in particular agent-based models. Such
models enable to also capture the decision making of actors involved in logistical processes. This is important for the
ability to capture the causality from which transport activities appear. Agent-based models are often also designed ina
way that they explicitly model time aspects.

Since TAPAS is an agent-based model for transport chain simulation, we will in the rest of this section discuss
some agent-based models for supply chain and freight transport analysis. As an example, an agent-based supply chain
modeling framework with the purpose of assisting managers to analyze and understand the impact (in terms of costs,
risks, etc.) of different decisions was presented in (Swaminathan et al., 1998). The framework made use of a library
of reusable software components to promote reusability, and it was used for analyzing different inventory policies with
the purpose of achieving improved inventory management. The similarity TAPAS has with supply chain models like
the one in (Swaminathan et al., 1998) is that it is built around similar structural components, however, the application
area of TAPAS is similar to that of traditional freight transport models. In supply chain models, common structural
components are activities/processes (such as manufacturing and assembling) and actors/roles (such as manufacturer and
customer). Strader et al. (1998) presented a multi-agent-based simulation tool, which was used to show the impor-
tance of information technology for supporting the order fulfillment process. This was achieved by studying a 5-tier
supply chain network under different demand management and information sharing policies.In a simulation model
by Gjerdrum et al. (2001), agent technology and mathematical optimization were combined in order to study different
inventory replenishment policies. Mathematical optimization was used to generate locally optimal manufacturing plans,
and agents (e.g., customer, warehouse, factory and transport agents) were used to manage the supply chain. In compar-
ison to our approach, the model by Gjerdrum et al. models manufacturing on a more detailed level, but transportation
is not modeled on a detail that allows transport-related policies to be studied. Liedtke (2009) presented an agent-based
approach to commodity modeling (INTERLOG), which is relevant for our work since its aim is to study the same types
of questions as can be studied with TAPAS. The major difference between the models concerns which actors dominate
supply chains; in TAPAS the customer is dominating, whereasin INTERLOG the supply chain is dominated by the
producers and the transport operators. Moreover, in contrast to TAPAS, INTERLOG assumes a pre-determined, how-
ever stochastically generated, transport demand. This makes it impossible to capture changes in transport demand, e.g.,
caused by changes in logistical structures. Moreover, the literature contains a number of newer agent-based simulation
approaches (van der Zee and van der Vorst, 2005; Chatfield et al., 2007; Roorda et al., 2010), which are presented as
re-usable non-implemented conceptual frameworks that canbe used as guidance when constructing agent-based sim-
ulation models. While these models are more on a conceptual level, TAPAS is more concrete as it is an implemented
model.

In summary, the literature contains a number of agent-basedmodels for supply chain and freight transport analysis,
however most of them focus on simulating already established chains, while TAPAS partially constructs the transport
chain, i.e., product supplier, route and transport operators are dynamically chosen. This is an advantage, since it enabled
us to base the TAPAS model on supply and demand for products instead of transport demand, which is the case in most
existing freight transport models.

3 The simulation model

In this section we present the TAPAS simulation model, whichhas a two-tier architecture with aphysical simulator
and adecision making simulator, as illustrated in Fig. 1. In the physical simulator, all physical entities (e.g., vehicles,
production facilities, transportation infrastructure) are modeled, and in the decision making simulator, a set of transport
chain decision makers (or roles) are modeled as agents. The main motivation for choosing a two-tier architectural
design is that entities in the physical simulator are considered passive, while entities in the decision making simulator
act independently and potentially proactively. The two layers are connected in a way that the activities in the physical
simulator are initiated by the decisions taken by the decision makers. The agents appear in a hierarchical structure (see
Fig. 1) to be able to represent the hierarchical decision making structure that is common in real-world transport chains.
In hierarchical decision making structures, information is not automatically made available for all agents, which may
result in a certain degree of local optimization. This appears to be rather typical in transport chains today, since often
only a limited amount of information is shared (Zhou and Benton Jr., 2007).

TAPAS has mainly been validated by interviews with experts in policy issues and transport modeling, and with
practitioners in transportation and logistics. Several simulation studies have been performed with TAPAS (e.g., Davids-
son et al., 2008), in which the sensitivity of different input parameters has been analyzed, and the results have in some
studies been compared to similar studies (Ramstedt, 2008).
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Fig. 1: Overview of the TAPAS simulation model with a physical simulator that is connected to a decision making
simulator.

3.1 The physical simulator
TAPAS uses a transport network, which can be described as a directed graph (N, L) with a set of nodesN and a set

of directed linksL. A node can be a customer node, a producer (factory) node, or aconnection point (terminal) in the
network. For future reference, we letNC ⊆ N refer to the customer nodes andNF ⊆ N to the producer nodes. A link
represents a directed connection between two network nodesand it corresponds to exactly one transport mode (typically
road, rail or sea), and two nodes may be connected by multiplelinks representing different modes.

3.1.1 Production
Commonly used production strategies are pull and push, where production is demand driven in the former and

forecast driven in the latter. Pull strategies are often used to decrease inventory levels and to better capture demand
variations, while push strategies often use resources better due to the potential for improved planning, e.g., by producing
larger batches (Ahn and Kaminsky, 2005). In TAPAS we have chosen a pull strategy, in which products are produced
in batches.

TAPAS models a set of product typesP, andPnf ⊆ P denotes the set of product types that can be produced in node
nf . For each product typep ∈ Pnf , we letcmtrl

nf p
denote the raw material cost per unit,sbatch

nf p
the maximum batch size,

cprod time
nf p

the production cost per time unit, andtbatch proc
nf p

the batch processing (production) time. A setup timetbatch setup
nf p

(e.g., representing changeover) is considered when two batches of different product types are produced in sequence.
The expected time

tprod
nf p

(q) =
⌈

q/sbatch
nf p

⌉

·
(

tbatch setup
nf p

+ tbatch proc
nf p

)

(1)

for producingq units of product typep in nodenf is calculated as the number of batches times the batch production time,
where the setup time is considered only if the previously produced batch had a different product type. The expected
cost

cprod cost
nf p

(q) = tprod
nf p

(q) · cprod time
nf p

+ cmtrl
nf p · q, (2)

for producingq units of product typep is calculated as the production cost plus the cost for raw material.
Hence, TAPAS makes use of a cost model in which the cost for products depends on the time for production. The

model has been chosen mainly due to its potential to represent different types of production models, i.e., (1) batch
production, (2) continuous production, by setting the batch size to one and the batch setup time to zero, and (3) instant
retrieval of products from storage, by setting the time-based production cost to zero, however without considering
inventory costs for products.
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3.1.2 Transportation
In TAPAS, transportation is carried out by a set of vehiclesV, where a vehicle is characterized by its loading capacity

(including type of storages), maximum traveling speed, fuel type, and emissions (e.g., NOx, CO and CO2) per consumed
unit of fuel. It should be noted that we also denote electricity as a fuel type. The amount of fuel that a vehicle consumes
depends on the weight of the carried load, and for vehiclev ∈ V, we let fuelempty

v denote the fuel consumption (per
distance unit) whenv is empty, andfuelfull

v the fuel consumption whenv is carrying its maximum loadwmax
v . The fuel

consumptionfuelv(w) (per distance unit) whenv carries a load of weightw (0 ≤ w ≤ wmax
v ) is approximated linearly

according to

fuelv(w) =
fuelfull

v − fuelempty
v

wmax
v

· w+ fuelempty
v . (3)

A vehicle has a transport mode (road, rail or sea) and it is only able to travel on links with the same mode. Further,
it might be controlled by a timetable (offering so called timetabled transports with scheduled timesfor departure and
arrival) or not (providing transports referred to as demanddriven). Transport costs consist of:

• time-based costs (e.g., driver, capital, and administration),
• distance-based costs (e.g., fuel, vehicle wear, and kilometer tax),
• link-based costs (e.g., road tolls), and
• fixed operator-based ordering costs (e.g., administration).

3.1.3 Terminals
For terminals, the focus is on modeling times and costs for loading and unloading of vehicles. The times for loading

and unloading a vehicle are expressed in terms of fixed and variable times. Fixed timestloading fixed
v and tunloading fixed

v

represent the times it take to prepare a vehicle for loading or unloading. Variable timestloading variable
vp andtunloading variable

vp

are given for each product type and denote the times needed for loading or unloading one unit of productp. The costs
cloading

v andcunloading
v for loading and unloading a vehicle are given as costs per time unit. The cost for loadingq units of

product typep onto vehiclev is calculated as:

cloading
vp (q) = cloading

v · tloading
vp (q), (4)

where the loading time is calculated as:

tloading
vp (q) = tloading fixed

v + tloading variable
vp · q. (5)

The formulas for unloading cost and time are identical to (4)and (5), except for that the cost and times for loading are
replaced with those for unloading. It is also possible to define vehicle specific fixed costs for visiting a terminal, e.g.,to
represent terminal fees, and terminal processing times in addition to the times for preparing a vehicle for loading and
unloading, e.g., to be able to model customs.

3.2 The decision making simulator
In TAPAS we consider six transport chain roles (or decision makers); transport chain coordinator, product buyer,

transport buyer, transport planner, production planner and customer. These roles can be argued to be present in all
transport chains. However, a role can be associated with different logistical operators depending on the organizational
settings within the chain. For instance, the transport chain coordinator may be represented by a producer in one transport
chain and by a third party company in another.

In TAPAS, each customer nodenc ∈ NC is represented by a customer agent (Cnc), each production nodenf ∈ NF by
a production planner agent (PPnf ), and transport planner agents (TP:s) represent transport providers (operators). There
exists one transport chain coordinator agent (TCC), one transport buyer agent (TB), and one product buyer agent (PB).
In a transport chain it is often possible to identify additional roles, such as terminal and inventory agents (Ramstedt,
2008), and in TAPAS we have chosen to implicitly capture these roles in the physical simulator instead of modeling
them as agents.

3.2.1 Interaction protocol for the ordering process
The process of buying resources (products or services) is a commonly occurring, and sometimes difficult, task,

especially when the availability of resources are limited,different resources depend on each other, or multiple buyers
and suppliers negotiate in parallel. The problem of how to automate the process of buying scarce resources is well
covered in the literature (cf. Sandholm and Lesser, 2001; Knabe et al., 2002; Schillo et al., 2002), but according to
our knowledge there exists no efficient approach for dealing with resources that depend on each other. When buying
resources that depend on each other, it is important that booking is made in a way that there will be no situations where
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one or more resources have been booked (and hence become useless) while it has become impossible to book some
other resources that are required for accomplishing an overall task. Hence, synchronization and booking should be
made in a way that it is guaranteed that either none or all required resources will be booked.

In TAPAS, a plan for fulfilling an order consists of a chain of tasks, starting with a production followed by a sequence
of transports for different parts of the distance between the producer and the customer. The tasks in a plan need to be
coordinated in a way that delivery is made inside the specified time window (if possible) and the starting and ending
times of subsequent tasks are synchronized. If a resource included in a plan is no longer available at the time of booking,
the whole plan may need to be reconsidered, and already booked resources may need to be canceled with a potential
penalty as a consequence. A possible solution to this problem is to force resource providers to commit to their offers,
as in thecontract net protocol(Smith, 1980). However, such an approach makes it more difficult to find good solutions,
as well as obtaining high resource utilization in the system(Knabe et al., 2002). The reason is that resources may be
allocated to potential buyers who later on decide not to bookthem, at the same time as other potential buyers may need
to make use of those particular resources in order to accomplish their goals.

In an approach for ordering matching products and transportation, two important challenges need to be considered:
(1) products and transportation cannot be booked simultaneously, either products or transportation has to be booked
first, and (2) products cannot be booked before finding a matching transport solution, and vice versa. In an earlier
version of TAPAS (Bergkvist et al., 2005), the contract net protocol was used for buying products from the supplier
offering the best price, and a second contract net protocol was used to buy a matching transportation even though it can
be considered hazardous to assume the availability of a costefficient matching transport solution at the time of buying
products.

In the current version of TAPAS we have dealt with this potential problem by applying a sequential ordering process,
in which only one customer order is allowed to be processed atthe same time. This guarantees that complete plans for
obtaining products will be available until all included tasks have been booked. In the ordering process, which uses an
interaction protocol originally presented in (Holmgren etal., 2007),TCC keeps a queue of incoming order requests that
are processed in sequence. A similar approach, however applied to a manufacturing system, is presented in (Komma
et al., 2007). The obvious shortcoming of such an approach isthat longer order processing times increase the risk that
the order queue becomes longer and longer, especially when there is a high ordering frequency in the system, or if
order processing times are long. In TAPAS, this is however not a problem, since order processing is assumed to be
instantaneous.

In Fig. 2 we illustrate the interaction protocol that is usedin TAPAS for fulfilling a customer order, and in Table 1
we describe the message types that are used in the interaction protocol. A new interaction starts whenTCC receives
an order request from a customer, and in two rounds of communication, a plan is first requested and generated (in the
first ten messages) and then booked and confirmed (in the next ten messages). Hence it follows that customer agents
are able to act proactively, while the other agent types are considered to be reactive. To improve the readability of the
diagram, only the main flow of messages is shown. Also, the protocol can be interrupted in most of the steps, e.g., when
PB fails to find an available supplier, or whenTB is unable to find a feasible transportation for any product proposal.

3.2.2 Customer
Each customer nodenc ∈ NC is operated by a customer agentCnc who is responsible for ordering products in

quantities that keep inventories at levels that minimize the costs for inventory holding and ordering, while reducing the
risk for stockouts. When choosing an ordering quantity, a tradeoff has to be made between two counteracting costs;
order cost (including costs for products, transportation,administration, etc.) and inventory holding cost. Typically,
the order cost per unit decreases and the inventory holding cost increases with an increasing consignment size, and
minimizing these costs gives theEconomic Order Quantity(EOQ).

In theWilson (EOQ) Model(Wilson, 1934), which is claimed by Alstrom (2001) to be the most commonly used
policy for finding the EOQ, the annual costs for ordering (DC/Q) and inventory holding (HQ/2) is minimized by
calculating EOQ according to

√
2CD/H, whereC denotes the fixed order cost (independent on order quantity), D/Q

the number of orders per year,H the annual holding cost, andQ/2 the average quantity in stock. However, the Wilson
formula relies on a number of assumptions about the modeled system (Axsäter, 2006). For instance, it assumes constant
purchase price per ordered unit and constant order cost, which both are assumed to be independent on order quantity and
time of order placement. This implies, e.g., that no volume discounts can be modeled. However, in TAPAS a customer
always pays the current cost for products and transportation, and in particular the cost for transportation varies, e.g., due
to load consolidation and departures of timetabled transports.

To be able to cope with non-constant order costs, we have usedan approach based on an idea for dealing with
deterministic time-varying demand (Silver and Meal, 1973), in which time is divided into disjoint time periods, and
candidate order quantities are those that cover the demand for a number of future time periods. The quantity that
minimizes the costs for ordering and inventory holding is then chosen. In TAPAS, a customer chooses the quantity that
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Fig. 2: Overview of the interaction protocol used in TAPAS only showing the main flow of messages.

minimizes the cost for ordering and inventory holding amonga set of predetermined candidate quantities. Hence, the
choice of candidate order quantities is made differently but the evaluation of quantities is identical in theapproaches.

At a particular point in time, the costc(p, q) per unit for orderingq units of product typep to nodenc is calculated
as

c(p, q) =
corder

q
+

corder · intp · tcon(p, q)

2 · q
,

wherecorder denotes the current order cost, i.e., costs for products andtransportation, including time-based product
cost during transportation,intp the storage interest for product typep (in nodenc), andtcon(p, q) the expected time for
consumingq units of product typep.

To be able to determine when to place an order, it is usually assumed that demand is known and constant over
time, and that the “order-to-delivery” lead time is fixed. InTAPAS, consumption is stochastic and lead times vary
due to several factors, including choice of transport mode and timetabled departures. Hence, the lead time remains
unknown until both product supplier and transportation have been chosen. The uncertainty of stochastic consumption
is dealt with by modeling safety stock levels, and each customer uses an estimated (approximate) lead time, chosen as
an estimated upper bound of the expected lead times for different transport alternatives and suppliers. Since demand is
stochastic and lead-times are just estimations, a difficulty with the applied ordering strategy is how to determinewhen
ordering should be considered. The traditional approach isto consider ordering as soon as the inventory level falls
below a certain threshold level. This is typically implemented by checking the inventory level in intervals, which in
our approach is referred to asordering opportunities. The time between two subsequent ordering opportunities should
be small enough to reduce the risk for stock-outs. Note thatCnc (the customer agent) may have different ordering
opportunities for different product types, and for each ordering opportunity a separate decision determines whether or
not an order request should be send. A decision whether or notto order at a particular point in time (i.e., an ordering
opportunity) is based on the so calledorder point

order(p) = safp + leadp · con(p),

wheresafp denotes the safety stock level,leadp the estimated “order-to-delivery” lead time, andcon(p) the fore-
casted consumption per time unit for product typep. If the current inventory levelinvcur(p) plus the planned deliveries
del(p, leadp) of product typep during the lead time period is less thanorder(p), i.e.,

invcur(p, nc) + del(p, leadp) < order(p),
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Table 1: Specification of message types in order of appearance in the interaction protocol. The confirmation messages
that are used in the protocol are considered self-explanatory, which is why we have chosen not to specify them.

Order request Delivery node, product type, a set of candidate order quantities, and for each can-
didate quantity, a delivery time window, an upper limit for how much delivery
is allowed to be delayed, and time-based convex penalty functions for delivering
earlier or later than the window.

Product request Product type and quantity.

Product proposal Product type, quantity, pickup node, price, earliest time when the products can be
picked-up, and supplier identifier.

Transport request Product type, quantity, pickup and delivery nodes, delivery time window, earliest
time when pickup can be made, time-based convex delivery penalty functions, and
an upper limit for delivery delay.

Link transport request Product type, quantity, departure and arrival nodes, and a time window in which
transportation is considered.

Link transport proposal
(timetabled)

Price (differentiated on transportation, loading and unloading), route identifier,
scheduled times for loading, unloading, departure and arrival, and transport op-
erator identifier.

Link transport proposal
(demand driven)

Price (differentiated on transportation, loading and unloading), carrier type, avail-
ability interval, time needed for transportation, for loading and for unloading, and
transport operator identifier.

Transport proposal Sequence of link transport proposals representing a transport solution and total
price for the solution. For demand driven link transport proposals, times for de-
parture, arrival, loading and unloading are specified. Linktransport proposals in
sequence are if possible re-represented (i.e., merged together) so that each link
transport proposal has exactly one loading and exactly one unloading.

Order proposal Matching product and transport proposals.

Order booking Order proposal.

Transport booking Transport proposal.

Link transport booking Link transport proposal as specified in the transport proposal.

Product booking Product proposal and specification of pickup time.

Cnc asks for order proposals (in an order request) for a set of quantitiesQ.
A delivery time window should be chosen in a way that there will be enough available inventory capacity at the time

of delivery, and that the risk for stock-out before deliveryis kept at a minimum. For an order quantity ofq units, the
delivery time window is calculated as

[

tcur + a, tcur +max

{

a,
invcur(p) + del(p, leadp) − safp

con(p)

}]

,

wheretcur denotes the current time,invmax
p the maximum allowed inventory level for productp, and parameter

a = max

{

0,
invcur(p) + del(p, leadp) + q− invmax

p

con(p)

}

,

makes sure that there will be enough available inventory capacity at the time of delivery.

3.2.3 Transport chain coordinator
TCC is responsible for managing all customer orders, and received order requests are put in a queue for sequential

processing. For each quantityq ∈ Q in an order request,TCC tries to find the least cost feasible combination of products
and transportation, which are represented in an order proposal. The order proposals (one for eachq ∈ Q) are returned
to the customer who chooses the “best” proposal (i.e., the EOQ). To be able to generate order proposals,TCC first asks
PB for relevant product proposals for each quantityq ∈ Q, by sending product requests. Then for each received product
proposal, it asksTB for a set of matching transport proposals, by sending transport requests.
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3.2.4 Product buyer
PB operates in betweenTCC and thePP:s, and it is mainly responsible for finding products that satisfy product

requests that are received fromTCC. When receiving a product requestPB forwards it to allPP:s, and the product
proposals that are returned are forwarded toTCC for further processing. When the customer has chosen an order
proposal, which represents EOQ,PB sends a product booking message to the chosen product supplier.

The behavior ofPB is not particularly advanced, and it can be argued thatTCC could communicate directly with the
PP:s instead of communicating throughPB. We includePB in the interaction protocol mainly for structural purposes
(we argue that all transport chains should have a product buyer), and due to its potential for future improvement. An
example of a possible refinement is to letPB operate more proactively in the ordering process, e.g., by filtering out all
product proposals except the best one in a particular geographic area.

3.2.5 Production planner
In TAPAS, each production nodenf ∈ NF is operated by a production planner agentPPnf whose main responsibility

is to plan the production innf . WhenPPnf receives a product request asking for a product typep ∈ Pnf and quantity
q, it generates a product proposal containing specification of the earliest timetprod

nf when the requested products can be

made available for pickup atnf , and a pricecprod price
nf , which is generated according to Equation (2), however withthe

difference that the expected production timetprod
nf p

(q) that is used as input to Equation (2) is calculated in Equation (1)
assuming that a batch setup time is considered for all batches.

A production cost that is calculated using the model described in Section 3.1.1 depends on whether or not there
need to be batch setups involved in the production, and in particular it depends on the batch sequencing, which typically
varies according to the changing demand for products. It is therefore not possible to use Equation (1) to generate the
production time when using the production cost model as a product price model without assuming that, e.g., a batch
setup time is included in each produced batch. Otherwise, there would potentially be unrealistic dependencies between
the production cost, which depends on factors such as batch sequencing, and the price for products, which normally is
rather static. In summary, the production cost model used inTAPAS assumes that setup is considered only when there
is a change in product type, and the product price model assumes that setup time is considered in all batches. Hence,
the product price is (1) an upper bound of the production cost, and (2) it does not depend on batch sequencing, which is
important in a model like TAPAS.

To enable an incoming order to be processed as early as possible, it is assumed that the existing production plan
can be rescheduled so that already scheduled products are produced earlier than originally planned, assuming there is
available production capacity for rescheduling. We have chosen not to consider the additional inventory costs that might
be a consequence of rescheduled production, since that would considerably increase the modeling complexity. In Fig. 3
we illustrate how a production plan can be updated to enable early processing of an incoming order.

Fig. 3: Illustration of how three scheduled batches (1-3) can be rescheduled in order to enable early processing of an
incoming order (4).

The rescheduling principle illustrated in Fig. 3 is used byPP:s both when generating product proposals and when
managing product bookings, i.e., when receiving product booking messages. WhenPPnf receives a product request,
it calculates the earliest possible pickup timetprod

nf by checking the earliest time that all scheduled productions can be
finished. This is achieved by imagining a sequence of all scheduled productions (starting from the time of the request)
in a way that there are no gaps in between any productions.

When receiving a product booking message,PPnf first checks if there is enough available capacity for production
immediately before the pickup time that is specified in the product booking message. In other words, it checks whether
or not the production can be planned without rescheduling. If that is the case it schedules the production so that the
booked products is expected to be available immediately before the requested pickup time. It should be noted that
such a procedure typically creates gaps in the production plan, as illustrated to the left in Fig. 3. If there is insufficient
capacity for production immediately before the specified pickup time,PPnf has to reschedule the existing production
plan so that the requested products can be produced immediately before the pickup time. The reason that productions
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are always scheduled as late as possible it that it is believed that such a policy in most cases creates a minimum need
for rescheduling. The rescheduling procedure can be seen asrecursive, since moving a scheduled production earlier in
time might create a need to reschedule the production immediately before that production, which might cause a need to
reschedule the production even before that, etc. It should be noted that is assumed that the pickup time specified in a
product booking message never violates the earliest pickuptime given in the corresponding product proposal.

3.2.6 Transport buyer
In TAPAS, the transport buyer (TB) is responsible for creating transport solutions in order to satisfy transport

requests received fromTCC. A transport solution is obtained by solving a shortest (cheapest) path problem with
additional constraints for representing the following complicating factors:

1. Vehicle capacities and previous bookings must be considered, e.g., the remaining capacity on a booked vehicle
should be made available for future bookings.

2. There is a mix of timetabled and demand driven transports.
3. Terminal activities such as unloading, loading, and reloading should be explicitly considered.
4. Delivery has to occur inside the delivery time window, otherwise a penalty cost should be applied.
5. Time-based, link-based, distance-based and fixed transport costs (as discussed in Section 3.1.2), and time-based

costs, e.g., for tied up capital and deterioration should beconsidered.

The literature contains a number of approaches to intermodal freight planning (e.g., Caramia and Guerriero, 2009;
Ziliaskopoulos and Wardell, 2000; Chang, 2008; Jansen et al., 2004). However, none of them applies to our problem
since either (1) they do not handle all complicating factorsthat we need to consider, or (2) the combination of timetabled
and demand driven transports are handled in an unsatisfactory way, e.g., by representing a demand driven transport as
multiple timetabled departures, i.e., one for each time period. Such a modeling approach may have severe affects on
the performance of the algorithm if the number of time-periods is high. Therefore, we have developed a customized
algorithm for finding transport solutions. A compressed pseudo code description of the proposed algorithm is given
in Algorithm 1. In the algorithm, a set of precompiled (manually specified) routesRnf nc, expressed as sequences of
network nodes is defined for each potential pair of pickup anddelivery nodesnf ∈ NF andnc ∈ NC. Since routes are
defined as node sequences, two sequenced nodes in a route may be connected by multiple links, e.g., corresponding to
different transport modes. The motivation for using precompiled routes is that useful routes generally are known or can
be found in advance.

In the algorithm,TB processes the routesr ∈ Rnf nc in sequence to be able to find the least cost transport solution,
possibly including penalty cost, for which a transport proposal is created and returned toTCC. The algorithm is
applied whenTB has received all link transport proposals for each pair of sequenced nodes (ni, n j) included in any
router ∈ Rnf nc (see the interaction protocol in Fig. 2). The link transportproposals that are returned from theTP:s
should have departure and arrival times, or intervals of availability for demand driven transports, inside an interval
[tprod

nf
, tlate

nc
+ klate], wheretprod

nf
is the earliest time the products can be available for pickupat nf , tlate

nc
is the end of the

delivery time window [tearly
nc

, tlate
nc

], andklate ≥ 0 is a constant that is used to allow delivery to be made later than the
delivery time window. However, penalty costs as specified bythe customer are applied to deliveries earlier or later than
the delivery time window.

In the search for the optimal transport solution the algorithm uses a search treeT, in which each tree nodeη (except
for the root of the tree) represents a link transport proposal with departure (network) nodedep(η) and arrival nodearr(η).
Instead of representing a transport proposal, the rootρ represents the delivery time window and serves as the parentof
all tree nodes representing transports arriving atnc. The search starts innc and proceeds backwards (along the routes
r ∈ Rnf nc) towardsnf by gradually expanding the search tree. For a search tree nodeη, one child node will be added for
each link transport proposal representing a transport arriving atdep(η). Hence, it follows that a link transport proposal
will be represented by multiple tree nodes in order to enableevaluation of each possible combination of link proposals
along the routes. Each search tree nodeη has a cumulative costc(η), which corresponds to the cost for moving the
goods fromdep(η) to nc (including unloading atnc). In the algorithm the following search strategies are applied:

1. Tree nodes for which the transports they represent are infeasible in combination with the transports represented
by their ancestor nodes, as well as nodes that necessarily lead to transport solution that are more expensive than
the so far best found solution will be pruned (i.e., no child nodes will be added).

2. A depth-first based traversal strategy is adopted in orderto potentially find valid solutions early to enable early
pruning of more expensive tree branches.

3. Tree nodes representing timetabled link transport proposals are expanded before nodes representing demand
driven link transport proposals.

The main challenge for the algorithm is to deal with the differences between timetabled and demand driven trans-
ports, where a previously booked demand driven transport isregarded as timetabled. The difficulty is that timetabled
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Algorithm 1 Find the least cost transport solution for a transport request, given a pickup nodenf , a delivery nodenc,
and link transport proposals for all connections in the routes inRnf nc. The cost for a tree node corresponds to the cost
for traveling from the departure node of the link transport proposal it represents until unloading atnc.

procedure findBestTransportSolution
create rootNode ⊲ rootNode represents the delivery time window
initialization: rootNode.cost := 0, rootNode.bestChild := null, bestCost :=∞
for each router ∈ Rnf nc do

for each link transport proposalt in r which has arrival nodenc do
newChild= createChild(rootNode,r, t, bestCost)
if newChild.cost< rootNode.bestCostthen

rootNode.bestChild := newChild, bestCost := newChild.cost
return best transport solution with cost bestCost ⊲ the best solution is obtained from the best child

procedure createChild(parentNode,r, t, bestCost)
create new node currentNode
initialization: currentNode.bestChild := null, currentNode.bestChildCost :=∞
if t is infeasible in combination with the transport represented by parentNodethen

currentNode.cost :=∞, return currentNode
if t is demand driventhen

set preliminary times for departure and arrival, and potentially for loading and unloading∗

calculate currentNode.cost ⊲ includes cost for transportation, loading, unloading, penalty, etc.
currentNode.cost= currentNode.cost+ parentNode.cost
if t.departureNode= nf then return currentNode.cost ⊲ a complete transport solution is found

if currentNode.cost≥ bestCostthen currentNode.cost :=∞ return currentNode
for each link transport proposalt′ in r that is connected to the arrival node oft do

newChild= createChild(currentNode,r, t′, bestCost)
if newChild.cost< currentNode.bestChildCostthen

currentNode.bestChild := newChild, currentNode.bestChildCost := newChild.cost
return currentNode

∗ Potentially involving a backtracking towards rootNode in order to represent updated preliminary times for a sequence
of demand driven ancestor nodes.

transports have fixed departure times while demand driven transports are flexible concerning departure and arrival
times. For simplicity of presentation, we here refer to treenodes representing timetabled and demand driven transports
as timetabled and demand driven nodes.

When expanding a search tree node, the feasibility is checked for all added child nodes, however in different ways
for timetabled and demand driven nodes, as explained below.Based on the departure and arrival times of its ancestors,
for a demand driven node the algorithm specifies preliminarytimes for departure, arrival and potentially for loading
and unloading. For a demand driven node it also specifies a possible interval of operation, defining when the activities
for the represented transport are allowed to take place. Fora demand driven transport, the interval of operation is based
on the interval of availability that is specified in the link transport proposal, as well as on the operation times of the
ancestors, and it may need to be used further down in the tree,e.g., when a timetabled successor requires that the
preliminary specified times for one or more demand driven ancestors should be updated. For a parent nodeη and child
nodeζ, we let z(ζ, η) ∈ {0, 1} denote whether or not the products will be reloaded (z(ζ, η) = 1) or not (z(ζ, η) = 0)
between the transports represented byζ andη, andcreloading(ζ, η) = cunloading(ζ)+ cloading(η) the cost for reloading. Since
it is only known by the child whether or not the goods need to bereloaded, the cost for loading has to be represented
in the child node. Moreover, since a parent typically has multiple child nodes, a reconsidering of the preliminary times
for a demand driven node needs to be represented in the particular successor node that requires that the times should be
updated.

The root. As mentioned above, the root nodeρ represents the delivery time window, and a timetabled transport arriving
at nc (i.e., a timetabled child ofρ) will always be valid since a penalty cost can be applied if delivery is made outside
[tearly

nc
, tlate

nc
]. Similarly, a demand driven transport is valid whenever the time interval for when it is available, as specified

in the link transport proposal, is at least as long as the timeit takes for the vehicle to perform its activities. For a demand
driven transport, preliminary times for unloading, arrival and departure are set as late as possible in the delivery time
window, and if delivery inside the delivery time window is impossible due to the interval of availability, the preliminary
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times are heuristically chosen either before or after the delivery time window in a way that the penalty is minimized.
The general form for describing the cost for a node that connects toρ is:

c(ζ) = ctransp(ζ) + cunloading(ζ) + ctime(ζ) + pen(ζ),

wherectransp(ζ) is the transport cost,cunloading(ζ) the unloading cost,pen(ζ) the potential penalty cost that need to be
considered when addingζ, andctime(ζ) a time-based product cost, i.e., the mathematical productof the product value,
the time between departure and unloading, and a time-based factor (or interest rate). The customer chooses this time-
based factor, and it may represent a cost for tied-up capital, deterioration, time to market, etc., for the particular type of
product.

Intermediary nodes. When adding a child nodeζ to an intermediary search tree nodeη (i.e., η is not the root), four
cases can occur depending on what types of transportsη andζ represent. It should be noted that the transport represented
by ζ occurs before the transport represented byη. With the notation introduced above, the costc(ζ) for reachingζ is
described as:

c(ζ) = c(η) + ctransp(ζ) + z(ζ, η) · creloading(η, ζ) + ctime(ζ) + pen(ζ),

where in particularpen(ζ) andctime(ζ) depends on several factors. The base case is that a time-based costctime(ζ) should
be generated for the time between the departure times ofζ andη.

If both η andζ are timetabled, it is only necessary to conduct a feasibility check to ensure thatζ will be further
expanded only if the arrival time ofζ is earlier than the departure time ofη, and if η andζ represent transports by
different vehicles there also need to be time for reloading.

Whenη is timetabled andζ is demand driven, the time for departure and loading in nodeη are strictly specified in
the corresponding link transport proposal, and the times for the activities represented byζ should be synchronized with
the activities in nodeη. Sinceη represents a timetabled vehicle whileζ represents a demand driven one (a vehicle is
assumed to offer either timetabled or demand driven transports), it is assumed that reloading will occur betweenζ andη.
The unloading ofζ will be preliminary scheduled immediately beforeη starts loading, and the actual transport (departure
and arrival) immediately before that. Ifζ is unavailable at the preferred time of operation, instead the activities inζ
should be preliminary scheduled earlier in the period of availability in a way that (as late as possible) the penalty is
minimized.

The case when bothη andζ are demand driven is similar to the previous case. However, if reloading needs to occur
betweenη andζ (i.e., η andζ represent different vehicle types), the loading ofη needs to be preliminary scheduled,
as this was impossible to do whenη was created. However, the preferred time for loading inη might be infeasible
due to the interval of operation forη, which means that the preliminary scheduled activities forη will have to be
rescheduled (actually delayed) and additional penalties,as well as an additional time-based cost (ctime(ζ)) should be
considered. Delayingη means that additional demand driven nodes, i.e., ancestorsof η, also may have to be delayed,
depending on how their activities are preliminary planned.Actually, the preliminary times of all sequential demand
driven nodes that can be found in a back-track search (towards the rootρ) until either a timetabled node or the root is
reached, may need to be rescheduled. If (in the back-track search) a timetabled nodeψ is reached before reachingρ, the
preliminary times for the activities represented by the demand driven ancestors betweenζ andψ should be synchronized
also considering the loading time ofψ (note that reloading will occur sinceψ is timetabled and its child in the current
branch is demand driven). Ifρ is reached before any timetabled node could be found, i.e.,ρ andζ is connected by a
sequence of demand driven transports, a penalty for delivering outside the specified delivery time window may have
to be applied as a possible consequence of rescheduling the node connected toρ. Another reason for rescheduling a
sequence of demand driven ancestors is a limited availability interval ofζ. Of course, limited intervals of operation for
one or more of the demand driven transports that need to be rescheduled may limit how rescheduling may be conducted,
and in worst caseζ will be infeasible, and hence pruned. Since each of the, potentially rescheduled, ancestors may have
multiple successors, it is important to emphasize that extra penalty costs and time-based costs that are a consequence
of the rescheduling of ancestors have to be represented inζ. Also, since a rescheduled node may have other branches,
which require different or no rescheduling, a specification of how activities for the ancestors are rescheduled should be
represented inζ.

The case whenη is demand driven andζ is timetabled is similar to the case when bothη andζ are demand driven.
The difference is that forζ, the times for loading, unloading, and traveling are represented in the corresponding link
transport proposal. As in the previous case, it might be necessary to rescheduleη and a sequence of demand driven
ancestors ofηwhenever the times ofζ causes infeasibility with the preliminary times ofη. In the same way as discussed
above, penalty cost and an additional time-based cost may have to be considered.

Leaf nodes. Leaf nodes, which represent transports departing fromnf , are processed exactly as intermediary nodes,
with the difference that loading also need to be scheduled forζ. This might lead to infeasibility and extra penalty cost
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and time-based cost, in the same way as discussed above. In general, the cost for a leaf node can be calculated as:

c(ζ) = c(η) + ctransp(ζ) + z(ζ, η) · creloading(ζ, η) + cloading(ζ) + ctime(ζ) + pen(ζ).

When the best sequence of tree nodes (a transport solution) for a transport request has been determined, the prelim-
inary times for all demand driven transports in the solutionneed to be permanently set. This may require that demand
driven transports included in the solution needs to be rescheduled according to the preferences of nodes further down in
the tree (i.e., closer to the leaf). If more than one node specifies a rescheduling of the same demand driven ancestor, it
is the preferences of the node closest to the leaf that shouldbe applied. The reason is that the preferences of a node that
is added later in the tree also takes into account the preferences of nodes that have been added earlier.

3.2.7 Transport planner
A transport planner agent (TP) represents an owner of a fleet of vehiclesVT ⊆ V, which are assumed to operate

in some particular geographic area, and the main responsibility of TP is to plan the vehicles inVT by assigning them
transport tasks. WhenTP receives a link transport request fromTB, specifying start nodens, end nodene, and a
window [ts, te], it creates a set of link transport proposals that are returned toTB. Since timetabled vehicles depart
and arrive according to timetables, while demand driven vehicles are flexible regarding when they are able to operate,
it follows that link transport proposals for the two different types of transports need to contain somewhat different
information. For a timetabled transport, a link transport proposal specifies the scheduled times for loading, unloading
and transportation, and for a demand driven transport, instead the time needed for traveling, loading and unloading,
as well as a time interval in which the transport is availablefor operation is specified. For a timetabled vehicle, a
separate link transport proposal will be generated for eachscheduled departure betweenns andnc, which has departure
and arrival inside [ts, te]. For demand driven transports, a separate link transport proposal can be generated for each
available demand driven vehicle, but since this may result in a large number of similar (or identical) link transport
proposals, instead one proposal, specifying an interval ofavailability is generated for each different vehicle type in
VT. Some advantages with this approach are that the interval ofavailability for a vehicle type may be considerably
larger than those for the individual vehicles of the particular type, and the number of link transport proposals can
be reduced. Moreover, link transport proposals for previously booked demand driven transports are generated as for
timetabled transports, and each scheduled demand driven departure (fromns to ne within the requested time interval)
with remaining capacity should be represented in a separatelink transport proposal, which specifies the planned times
for departure, arrival, loading, and unloading.

Typically, a vehicle carries products for more than one customer (i.e., load consolidation), and a buyer of transport
capacity should pay a reasonable share of the total transport cost. However, when giving a link transport proposal,TP
only knows about already booked consignments. Future bookings can only be guessed, or estimated from forecasts.
Also, how much goods will be carried on the return transport is something that potentially could have an effect on
the price for transport capacity. We do not model return transports explicitly, but return transports can implicitly be
represented by adjusting different cost components and the average load utilization factor, and it is the responsibility
of the user to decide if and how return transports should be considered. In summary, the major difficulty for TP is to
determine prices for those transport bookings that do not utilize the full capacity of a vehicle.

An obvious approach for setting the transport price is to charge a price that is based on the weight and size of the
goods to be transported, as well as on an average load utilization factor. In this approach, no volume discounts are
modeled, and the cost for buying transport capacity is calculated as:

corder =
cT · f L

f avg
+ cfuel(w), (6)

wherecT is the total transport cost (including fuel cost for an emptytransport),f L the load utilization factor for the
requested load,f avg the assumed average vehicle load utilization factor (potentially different for different vehicle types,
geographical areas and transport operators), andcfuel(w) the fuel addition cost based on the weightw of the requested
load. The load factor (f L) is calculated as the requested quantityq divided by the maximum loading capacity of the
requested product type, restricted either by the volume or weight capacity of the vehicle. As mentioned above, the fuel
cost for a transport is included incT , and the fuel addition costcfuel(w) is calculated as:

cfuel(w) = l · (fuelv(w) − fuelempty
v ), (7)

wherel is the traveled distance andfuelv(w), which is the fuel consumption per distance unit when carrying a load of
weightw, is calculated according to Equation (3).

In addition to the linear pricing model described above, we provide a pricing model in which a risk cost is added
to bookings that leave transport capacity unbooked. The risk cost is based on an estimated probabilityd, at the time of
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giving a link transport proposal, that there will be at leastone more booking before the departure. Typically, the risk
costs for bookings decrease as the amount of booked transport capacity increases, and it is the responsibility of the user
of TAPAS to specify how the probabilities should be calculated.

In the pricing model with a risk cost, the order cost is calculated as:

corder = cT · f L + cfuel(w) + risk, (8)

where the risk cost is calculated as:
risk = (1− d) · cT · f R, (9)

and f R is the remaining transport capacity, at the time of booking,in percentage of the total capacity.
In summary, we propose two different approaches for setting the price for transport capacity; one where the price

depends linearly on how much capacity is ordered, and one where early bookings gets a larger share of the transport
cost to cover for the uncertainty regarding future bookings.

3.3 Implementation
TAPAS is implemented as a discrete event simulator, since wefound it appropriate to model the studied domain as a

chronological sequences of events, representing activities such as order processing, loading, unloading, departures, and
arrivals. It makes use of a next-event time advance mechanism, instead of fixed-increment time advance approach, due
to its ability to simulate time in an arbitrary level of detail. TAPAS is implemented in the Java language, and the decision
making simulator is implemented using the Java Agent DEvelopment Framework (JADE) platform (Bellifemine et al.,
2007).

Agents operate autonomously and typically asynchronously, and in agent-based (parallel) simulation it is important
to carefully consider how to synchronize activities with the simulation clock. There are two approaches for synchro-
nizing parallel simulation (cf. Xuehui et al., 2009); inconservative protocolsactivities are always simulated in chrono-
logical order, and inoptimistic protocolsactivities are allowed to be simulated in non-chronological order, however
with the consequence that the simulation needs to be recovered when synchronization errors occur. TAPAS makes use
of a conservative approach, in which asynchronization agentis used to ensure that activities always are simulated in
chronological order. The synchronization agent manages the simulation clock and it maintains theevent queue, in which
future events are sorted in chronological order. It should be noted that, at a particular point of time only some future
events are typically known; events are continuously generated as the simulation proceeds over time. The behavior of
the synchronization agent can be described as a loop in whichit (1) removes the first event (i.e., next in time) from the
event queue and (2) advanced the simulation clock to the timeof the event that was removed from the queue. It also
sorts new events into the event queue whenever they are created.

Activities are in TAPAS represented by start and end events,which makes it straightforward to simulate that ac-
tivities may take longer time than expected, i.e., delays inactivities. In TAPAS it is possible to model production and
transportation using user-defined probability distributions. Start events are created as consequences of other activities,
e.g., since order processing occurs at fixed points in time the start event for next order processing is created when
processing the end event for the previous order processing,and events for starting production and transportation are
generated at the time of booking those activities. The end event for an activity is created at the start of the activity (i.e.,
when the start event is processed). The delay for an activityis known already when the activity starts, and it is therefore
captured in the time for the end event of the activity.

Those physical entities that perform activities (not entities such as links and nodes) are in TAPAS connected to
agents. For example, vehicles are connected to transport planners and production facilities to production planners.
When the synchronization agent processes an event, it sendsa message to the agent connected to that event, providing
informing about the activity that should start or end (depending on whether the processed event is a start or end event).
In case the activity cannot start (or end) at the particular point of time, the agent returns a message informing about that.
The synchronization agent is equipped with a mechanism for handling delays and dependencies between activities. In
addition to managing the event queue, the synchronization agent also keeps a list of events that for different reasons are
unable to start, e.g., since they are waiting for other, potentially delayed, activities to end. For example, the loading of a
vehicle in a producer depot may have to wait for a delayed production to finish. Whenever an activity has ended (i.e., an
end event has been processed) the synchronization checks ifany activity in the waiting list could start as a consequence
of the ended activity. If that is the case, the synchronization agent creates a start event for the activity that might start
and schedules it in the event queue as early as possible.

4 Scenario and simulation study

In this section we illustrate the functionality included inTAPAS by briefly describing a simulation study that has
been conducted in a scenario around the Southern Baltic Sea.The scenario is an extension of a scenario that has been
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studied in collaboration with partners in an EU financed project called EastWest Transport Corridor (http://www.eastwesttc.org).
It contains one logistical terminal, in Kaunas (Lithuania), which provides two types of products, and three customers;
one in Sweden (Älmhult) and two in Denmark (Copenhagen and Esbjerg). In the scenario, which is illustrated in Fig. 4,
transportation of 20 ft ISO-containers (TEUs) from Kaunas to the three customers is offered by five transport providers.
Transportation by sea and rail is assumed to follow timetables while transportation by road is demand driven. A detailed
description of the scenario, including input parameters for all entities, timetables, etc., is given in (Holmgren, 2011).

Fig. 4: Illustration of the transport network used in the scenario, where the numbers on the links represent distances in
kilometers.

We studied the consequences of three transport policy and infrastructure measures aimed at achieving a modal shift
from road to rail and sea transportation, which is a goal within the European Union (European Commission, 2001); an
introduction of a kilometer tax for heavy trucks in Sweden and parts of Denmark, a CO2 tax for all types of transports
in the studied area, and a new direct railway link between Karlshamn and Älmhult (the so-called SouthEast Link). The
kilometer tax level is suggested in (Friberg et al., 2007) and it is differentiated based on the euro class, as well as on the
total weight of the trucks, the CO2 tax levels are similar to the levels discussed in (SIKA, 2008), and the SouthEast Link
is an infrastructure project that is currently discussed inSweden. In the study, we investigated two different timetables
for the SouthEast link.

The scenario and its results have been validated through interviews with domain experts, and a visualization of the
scenario helped us discover unrealistic assumptions and tofacilitate the communication of assumptions and simulation
results. We have performed sensitivity analyses of different input parameters in order to understand what influence
different parameters have on the results. Moreover, the estimated transport cost structures, i.e., the relations between
time-based and distance-based costs have been compared to the cost structures used in the Samgods model (Swahn,
2001).

In the simulation study we considered the following experimental settings:

S0. The base case refers to the current situation in which none ofthe studied measures are applied.
S1. S0+ a kilometer tax of 0.15 euro/km for trucks operating in Sweden, and between Copenhagen Terminal and

Copenhagen Customer.
S2. S0+ a CO2 tax for all vehicles operating in the modeled region. Tax levels from 0.10 euro/kg up to 0.30 euro/kg in

steps of 0.05 were considered. We let S2.x refer to setting S2 with a CO2 tax level of 0.x euro/kg.
S3. S0+ a new railway link between Karlshamn and Älmhult (i.e., the SouthEast Link). Two timetables, which are

synchronized in different ways with ferry arrivals in Karlshamn (from Klaipeda), were considered: (a) worse
synchronization and (b) better synchronization (see (Holmgren, 2011) for specification of timetables).

For each setting we simulated 420 days with a precision of 1 min. We made simulation runs with 10 sets of random
generator seeds for variation of consumption (different seeds were used for different customers). Each set of seeds was
used for all settings, which enabled us to make pair-wise comparisons of results for different settings.

From a larger set of available routes (see (Holmgren, 2011) for specification of all routes available in the scenario),
we observed that the following five routes were used, howeverin different proportions for different settings:

Route 1. Kaunas (Rail) Klaipeda (Sea) Karlshamn (Road) Älmhult
Route 2. Kaunas (Rail) Klaipeda (Sea) Karlshamn (Rail) Älmhult
Route 3. Kaunas (Rail) Klaipeda (Sea) Karlshamn (Rail) Copenhagen Terminal (Road) Copenhagen Customer
Route 4. Kaunas (Rail) Klaipeda (Sea) Karlshamn (Road) Copenhagen Customer
Route 5. Kaunas (Rail) Klaipeda (Sea) Fredericia (Road) Esbjerg

An important indicator of the impact of the studied measuresis the route choice, which we illustrate with the per-
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centage of TEUs transported using different routes. In Table 2 it can be seen that all of the studied measures caused a
shift towards routes involving more rail transports and less road transports. However, for different measures the shift
was observed in different parts of the network. For transportation to Älmhult, the only measure that showed an effect on
the route choice is the SouthEast Link. In the settings without the SouthEast Link, all TEUs were transported on road
between Karlshamn and Älmhult (i.e., Route 1). In the settings with the SouthEast Link (S3a and S3b) we observed
shifts toward Route 2 using the SouthEast Link (i.e., railway). In S3a in average 5.8% and in S3b in average 43.6% of
the TEUs were transported using Route 2. Not surprisingly, in the setting with better timetable synchronization (S3b)
we observed a higher shift than in the setting with slightly worse synchronization (S3a). In all settings, transportation
of all TEUs to Esbjerg were made using Route 5, with sea transportation from Klaipeda to Fredericia followed by road
transportation from Fredericia to Esbjerg. This is reasonable due to the fact that the long distance makes it economically
tractable to use sea transportation instead of land transportation through Sweden and Denmark. For Copenhagen Cus-
tomer, which can be reached only by truck, the results vary for the different settings. For settings S0 and S3, in which no
measures were applied for transportation on the routes to Copenhagen Customer, all transports were made using road
transportation from Karlshamn directly to Copenhagen Customer (i.e., Route 4). In setting S1 (kilometer tax), a 100%
shift towards Route 3 using rail between Karlshamn and Copenhagen Terminal followed by road transportation between
Copenhagen Terminal and Copenhagen Customer was observed.For settings S2 (CO2 tax), a gradually increasing shift
towards Route 3 was observed as the tax level was increased.

Fig. 5: For each studied measure, the relative reduction (inpercentage) of CO2 emissions for (a) the whole system, and
(b) land transports in Sweden and Denmark.
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(b) Land transports in Sweden and Denmark

A positive consequence of achieving a shift from road to railtransportation is a reduced amount of CO2 emissions.
All observed reductions of CO2 emissions in the studied system was a consequence of a modal shift from road to rail in
Sweden and Denmark. In Table 2 we show the average CO2 emissions (in tons), as well as the average transport work
(in tonne-kilometer), which is another important indicator of a changed transport pattern, for transportation of one TEU
from Kaunas to each customer. Moreover, in Fig. 5 we present the relative CO2 reduction for (a) the whole system, and
(b) land transports in Sweden and Denmark. The main reason for observing a small reduction of CO2 emissions when
considering all simulated transports is that a significant share of the transports in all settings were made using sea and
rail transportation between Kaunas and Karlshamn and between Klaipeda and Esbjerg. Further, the transport costs are
affected in different ways by different measures and it may be important to analyze the positive effects (e.g., reduced
CO2 emissions) in relation to the economic impact caused by applying measures. For the studied measures, we show in
Table 2 the average costs for transporting one TEU to the different customers.

5 Discussion

A general assumption in TAPAS is that decision makers are local cost minimizers. It is possible to model decision
makers in other ways, e.g., by letting them behave accordingto simple rules that are coded into the agents. However,
it is often reasonable to assume that real-world decision makers strive towards behaving optimally. Moreover, it may
sometimes be relevant to let other factors than cost, e.g., environmental impact, reliability and punctuality, influence
the decision making. However, most types of factors can be represented in the decision making process by different
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Table 2: For each setting, the average taken over 10 replications for a number of relevant types of output data.

S0 S1 S2.10 S2.15 S2.20 S2.25 S2.30 S3a S3b

Share of TEUs (in percentage) transported using different routes (differentiated on customer)

Älmhult
Route 1 100 100 100 100 100 100 100 94.2 56.4
Route 2 0 0 0 0 0 0 0 5.8 43.6

Copenhagen
Route 3 0 100 49.6 49.6 66.0 78.5 100 0 0
Route 4 100 0 50.4 50.4 34.0 21.5 0 100 100

Esbjerg Route 5 100 100 100 100 100 100 100 100 100

Average transport work (in tonkm) for transportation of one TEU to each customer (differentiated on transport mode)

Älmhult
Rail 2640 2640 2640 2640 2640 2640 2640 2689 3009
Road 847 847 847 847 847 847 847 798 478
Sea 5907 5907 5907 5907 5907 5907 5907 5907 5907

Copenhagen
Rail 2640 5280 3949 3949 4382 4713 5280 2640 2640
Road 2123 352 1245 1245 954 733 352 2123 2123
Sea 5907 5907 5907 5907 5907 5907 5907 5907 5907

Esbjerg
Rail 2640 2640 2640 2640 2640 2640 2640 2640 2640
Road 1045 1045 1045 1045 1045 1045 1045 1045 1045
Sea 9900 9900 9900 9900 9900 9900 9900 9900 9900

Average CO2 emissions (in tons) for transportation of one TEU from Kaunas to each customer
Älmhult 0.623 0.623 0.623 0.623 0.623 0.623 0.623 0.622 0.616
Copenhagen 0.679 0.660 0.670 0.670 0.667 0.664 0.660 0.679 0.679
Esbjerg 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885 0.885

Average cost (in euro) for transporting one TEU to each customer.
Älmhult 364.2 368.5 426.0 456.9 487.8 518.7 549.6 364.7 364.3
Copenhagen 554.8 566.3 627.3 660.9 695.4 729.4 764.5 554.9 554.8
Esbjerg 519.0 519.0 606.9 650.8 694.7 738.6 782.6 519.0 519.0

types of costs. For instance, uncertainty regarding reliability and punctuality may be represented as internal costs in
organizations, and environmental impact may be represented as governmental taxes and fees.

The cost models that are used in TAPAS (e.g., for production,transportation and ordering) have mainly been chosen
to enable real-world resemblance to be obtained in modeled scenarios, and we argue that this is the best way to define
cost models in a simulation model like TAPAS. For instance, the model for estimating production costs allows the user
to define three types of production strategies; batch production, continuous production, and instant retrieval of products
from inventory. Moreover, two different models for setting transport prices are provided, andthe user of TAPAS decides
on case basis which model is best to use. However, there is room for improvement of the cost and pricing models. For
instance, it could be relevant to provide the possibility tomodel product-dependent fixed costs and preparation times
in terminals to be able to represent special requirements (time and other resources) that are needed for loading and
unloading of particular product types. Also, it could be relevant to introduce fixed costs in a production line, e.g., to
represent wastage when changing product types. However, this would require a more advanced model for determining
production costs. Further, it would be relevant to extend and improve the models for calculating transport costs, e.g.,
since different types of time aspects often have an important influenceon the decision making regarding which transport
alternatives are most appropriate (Sommar and Woxenius, 2007). A possible extension would be to model punctuality
as a cost component to let it have an influence on the decision making. Moreover, train transport costs include many
different cost components, which interact in a rather complex way, and a possible extension would be to make use of
some of the ideas in the train transport cost model proposed by Troche (2009). Similarly, the ship transport cost model
could be further refined, e.g., by also taking into account fuel consumption at berth.

An important advantage of agent models is the modular structure, which enables adjustments of local models. To
develop TAPAS to function even better as a general transportchain simulation model, a library of different types of
models, strategies, and behaviors would facilitate the simulation of different scenarios. Moreover, the possibility to
achieve benefits by advanced cooperation, such as joint planning within the transport chain, is an aspect that would be
relevant to investigate further. As an example, the transport providers, as well as the customer could benefit from letting
TB negotiate directly with the customer regarding the delivery time window when there are cost efficient transport
alternatives that have been disregarded due to penalties. To enable cooperation between decision makers to be captured
in TAPAS, it would be necessary to extend the proposed interaction protocol. A possible approach would be to model
agents as finite state machines, in which different types of behavior are allowed only when an agent is in certain states.
This would make it easier to customize the communication between agents for particular scenarios, which would further
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increase the generalizability of TAPAS.
Another aspect that would be interesting to consider is dynamic agent behavior, which would further improve the

possibility to accurately mimic real-world situations. Itwould be interesting to consider agents that learn from experi-
ence how to improve their behavior. For instance, it would bepossible for customer agents to improve their ordering
strategies by dynamically updating their safety stock levels when it is realized that some product types frequently run
out of stock. Moreover, it would be interesting to allow agents to dynamically enter or leave the system, which would
make it possible to study how situations evolve over longer periods of time.

6 Conclusion and future work

We have presented a micro-level model for transport chain simulation. By using agent technology, we were able
to simulate the decision making activities as well as the interaction between actors, which is difficult, if possible at
all, using traditional techniques. By conducting a simulation study in a scenario around the Southern Baltic Sea, we
have shown that it is possible to use TAPAS for studying various types of transport policy and infrastructure measures.
Moreover, we have shown (1) that it is possible to deal with the complexities of mixing timetabled and demand driven
transports in the algorithmic approach (2) that it is possible to simulate the principles of EOQ by letting the customer
select the best order quantity among a set of possible quantities, and (3) the interaction framework is appropriate for
capturing the ordering process in a multi-agent-based transport chain simulation model for analysis, e.g., of transport-
related policy and infrastructure measures.

The studied scenario contains 12 agents; 3 customers, 1 production planner, 5 transport planners, 1 transport chain
coordinator, 1 product buyer, and 1 transport buyer. We believe it is possible to scale up the size of scenarios to a few
hundred producers and customers without reimplementing TAPAS, however, this need to be confirmed in simulation
experiments. The goal is to be able to use TAPAS for studying larger regions containing thousands of producers and
customers. A possible approach to improve the scalability would be to enable TAPAS to be executed on multiple
processors.

Below we give a few pointers to further development of TAPAS.Extensions of the modeling on the agent level
include: (1) integration of sophisticated optimization algorithms in the agents to improve the quality of their decisions,
(2) allowing agents to communicate outside the proposed interaction protocol to enable enhanced cooperation between
transport chain actors, (3) allowing agents to learn from experience, and (4) allowing agents to dynamically enter and
leave the agent system. Examples of interesting extensionsto the physical simulator are: (1) including external aspects
that affect transportation, e.g., by simulating other traffic on the links, which would enable us to study the effects of
link congestion, (2) simulating that real world ordering processing is time consuming (currently order processing is
assumed to be instantaneous), and (3) allowing customer orders to be processed in parallel, which would require that
aspects related to resource allocation in the ordering process need to be carefully considered.
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