Examensarbete
15 högskolepoäng

Digitala verktyg i matematikundervisning

Digital tools in mathematics teaching

Helén Moberg
Sammanfattning

Syftet med min studie var att undersöka om problemlösning i matematik gick att förena med användandet av digitala hjälpmedel/program ur ett elev- och lärarperspektiv. Mina frågeställningar rörde hur digitala program som verktyg påverkade matematikundervisningen och hur elever och lärare såg på att arbeta på detta sätt.

Metoden jag har använt är att läsa böcker, tidningar, artiklar, avhandlingar och även på webben. Mitt underlag bygger på observationer i en andракlass vid fyra tillfällen, intervjuer med fyra elever och läraren i klassen. Klassen arbetade med digitala program där de löste problemlösningsuppgifter i matematik.

Resultatet visade att digitala program i undervisningen gav eleverna möjligheter till att samspela, samtala, reflektera och att använda sig av matematiska begrepp.

Slutsatsen är att digitala verktyg är ett av flera verktyg som bidrar till att eleverna samspelar, samtalar med varandra, reflekterar och använder ett matematiskt språk. Digitala verktyg ger eleverna ett lustfyllt verktyg till att lösa uppgifter av problemlösende karaktär i matematik som också finns i deras vardag. Dock ser jag att lärarens betydelse är stor och att det är viktigt hur undervisningen är upplagd.

Nyckelord: digitala verktyg, IKT, matematiska begrepp, problemlösning, samspel, samtal.
Förord

Jag vill börja med att tacka alla elever och den lärare som låtit mig vara med och observera deras arbete med programmen LynX och Wordwall när de haft matematik. Jag vill också speciellt tacka de elever och läraren i klassen som ställde upp och svarade på mina intervjufrågor.

Ett tack till min vän Åsa Bengtsson, som väglett mig med struktur och ställt reflekterande frågor.

Till sist ett tack till min handledare, Eva Riesbeck, som gett mig feedback och gjort så att denna uppsats blivit möjlig.
1. Inledning

En debattartikel från 2010 av docent Tomas Lingefjärd, Göteborgs universitet och Per Jönsson, Malmö Högskola, visar att det är långt kvar till detta. I artikeln går det att läsa att den svenska skolan är sämst i Europa när det gäller att använda modern teknik i matematikundervisningen.3 Vidare skriver författarna att trots att Sverige har en stor tillgång till datorresurser utanför skolan så är tillgången på datorer i skolan klart sämre än genomsnittet i OECD. Det har också visat sig att i just matematik och de naturvetenskapliga ämnena är tillgången än sämre. Det är just de ämnena där många svenska elever är dåligt motiverade och klarar sig allt sämre i internationella jämförelser.4 Teknikdelegationen är utsedd av regeringen för att arbeta mot en ingenjörsbrist och ta till olika åtgärder för att öka ungdomars intresse för utbildningar inom IT, teknik, naturvetenskap och matematik.5 De menar att skolväsendet inte har förmågan att fånga upp elevernas grundläggande intresse som de flesta barn och

1 Läroplan för grundskola, förskoleklassen och fritidshemmet 2011, s. 14, 62
3 http://www2.diu.se/framlar/2010/11/26/debatt-datorer-i-matematikundervisningen---sverige-ar-samst-i-klassen/-more-9714
4 http://www2.diu.se/framlar/2010/11/26/debatt-datorer-i-matematikundervisningen---sverige-ar-samst-i-klassen/
5 http://www.regeringen.se/sb/d/10407/a/112517
ungdomar har idag. Konsekvenserna av detta är de sjunkande kunskapsresultaten i matematik.⁶

Kan vi då värrja oss från IT i skolan? Knappast då elever idag växer upp och har datorer, mobiltelefoner, surfplattor och internet tillgängligt och ständig kan vara uppkopplade med möjlighet att kommunicera. Det är en del av deras lärande och bidrar även till synen på lärandet i skolan. Min hemkommun är en av 209 kommuner som har infört och satsat extra på IKT i undervisningen. Det gör det än mer intressant för mig att se på hur elever i skolan använder sig av datorer. Barn och ungas nätvanor och lärande utanför skolmiljön är en dold utvecklingsresurs som skulle kunna användas i skolan som ett redskap för ett mer effektivt lärande. Dock saknar skolan till stor del idag kunskaper om både nätvanor och hur lärandet sker på fritiden.⁷

Enligt Skolinspektions kvalitetsgranskning pågår undervisningen som tidigare med enskilt tyst elevarbet e och kommunikationen i klassrummet är i form av envägskommunikation, trots att kursplanen framhåller diskussion och kommunikation.⁸

IKT betyder informations- och kommunikationsteknik och är den delen av IT som skapar kommunikation mellan människor. Intresset för IKT är stort och då det ger utökade möjligheter till kommunikation mellan människor är det en brist att det inte utnyttjas i skolan.

Svenska skolelever står sig dessutom dåligt i internationella studier. 2007 gjordes en särskild uppföljning av TIMSS-resultaten i matematik. Uppföljningen visade att svenska elevers problem inte var beräkningarna utan förståelsen av sammanhang. Ett av problema var att eleverna inte fått möjlighet att diskutera och fått förståelse för hur de ska gå vidare i sina beräkningar. De kunde därför inte heller tillämpa dem på nya matematiska problem på ett självständigt sätt.⁹

Jag vill därför undersöka hur användandet av IKT kopplat till matematik ser ut och om det ger eleverna möjlighet till samspel och samtal.

⁶ Teknikdelegationen, (2010) s. 11
⁷ Åkerlund, (2011), (red. Alexandersson & Hansson) s. 27
⁸ Teknikdelegationen, (2010) s. 91
⁹ Teknikdelegationen (2010) s. 87
Mitt intresse för IKT har tagit fart genom ett EU-projekt som jag har varit med och startat upp på min förra arbetsplats. Ett av de syften projektet hade var att bidra till att öka barns och ungdomars intresse för matematik, teknik och naturvetenskap. Det övergripande målet var att utveckla innovativa och beprövade lärmetoder, material och miljöer för undervisningen i matematik, teknik och naturvetenskap. Efter gränsöverskridande träffar med andra skandinaviska skolor i projektet har mitt intresse ökat.

I Nationalencyklopedin har IT och IKT definierats på följande sätt:

"IT, informationsteknik, (engelska information technology), samlingsbegrepp för de tekniska möjligheter som skapats genom framsteg inom datorteknik och telekommunikation. Den fortskridande förbättringen i datorens prestanda tillsammans med kapacitetsökningen i det globala telenätet ledde under 1990-talet till att IT kom att utpekas som en av de viktigaste drivkrafterna för industriella och samhälleliga förändringar. Även beteckningen ICT (engelska information and communication technology) används då man särskilt vill betona telekommunikationens roll."

Min tolkning blir då att när vi använder begreppet IKT så framhåller vi särskilt den så viktiga kommunikationsmöjligheten.
1.1 Syfte

Mitt syfte med denna studie är att undersöka om matematik går att förena med användandet av digitala program som verktyg, dels ur elevernas perspektiv dels ur lärarens perspektiv.

I min studie vill jag se hur IKT kan påverka matematikundervisningen särskilt med avseende på kommunikationen. Jag menar då att IKT i undervisningen är att eleverna använder sig av IT som t. ex. digitala program i datorer eller skrivtavla för att samtala, samspela och reflektera över sina uppgifter. Datorer, skrivtavla och som några använder sig av, dokumentkameran, är en av flera tillgängliga representationsformer. Även papper och penna är tillgängligt för eleverna att använda. Den ena formen behöver inte utesluta den andra, enligt Devlin.11

1.2 Frågeställningar

Hur påverkar digitala program som verktyg matematikundervisningen?
Hur ser eleverna på detta sätt att arbeta?
Vad säger läraren om att arbeta så här?

11 Devlin (2011) s. 173
2. Litteraturgenomgång

2.1 Forskningsläge

Barn idag har ideliga möjligheter att kommunicera, de växer upp i en värld där datorer och internet och mobiltelefoner är tillgängliga. Det påverkar deras syn på lärande både i och utanför skolan. Man kan fråga sig varför elevers kunskaper om IKT inte utnyttjas i undervisningen.

Player-Koro menar i sin avhandling att IT har på ett ganska oreflekterat sätt under många år sett som ett redskap att frälsa skola, lärare och utbildningssystem. Forskning inom IT har ökat lavinartat och det har varit svårt att belägga empiriskt dess möjligheter. Det man kan se är att det finns en tydlig skillnad i forskning och retorik gentemot vad många studenter vid lärarutbildningen och elever i den pågående undervisningspraktiken erfar. I hennes avhandling menar hon att lärarutbildningen i matematik är traditionell och inte har tagit till sig den reformering av lärarutbildningen som varit. Användandet av IT i skolan uppfattas som ett misslyckande vilket kan bero på bristen att sätta det i relation till vilka möjligheter skolpraktiken har till sitt förfogande. Player-Koro menar också att det är lärares pedagogiska tankar och deras engagemang som är viktigast om en lärare använder IT eller inte.

Lingefjärd & Jönsson säger också att det brister i fortbildning. Bristen att påverka datoranvändningen i skolan, såsom installationer av nödvändiga program och programvara är en förklaring till att IT i skolan ses som ett misslyckande. Det visar sig även i forskningsprojektet ”Matematik för den digitala generationen” att lärare saknar ämnesinriktad fortbildning där de får prova och lära känna ny teknik och nya metoder.

13 http://www.skolverket.se/skolutveckling/forskning/amen-omraden/matematik/undervisning/traditionell-trots-it-1.176341
14 Player-Koro (2012), s. 108, 95
15 http://www2.diu.se/framlar/2010/11/26/debatt-datorer-i-matematikundervisningen--sverige-ar-samst-i-klassen/
16 http://www.mah.se/Forskning/Sok-pagaende-forskning/Matematik-for-den-digitala-generationen/
Teknikdelegationen påpekar att alla kunskapsmätningar med alarmerande resultat visar skolans oförmöga att ge eleverna en likvärdig grund i matematik och IKT. De menar att det fundamentala problemet ligger i det otillräckliga ledarskapet från skolhuvudmannens sida och bristfällig lärarutbildning tillsammans med fortbildning. Lärarna behöver en stabil pedagogisk och ämnesmässig utbildning och att få tillgång till fortlöpande fortbildning, tillgång till pedagogiska utvecklingsprojekt och inte minst till forskningsresultat.17

Jedeskog säger att de forskningsstudier som hittills gjorts har en gemensam hållning som visar att den pedagogiska synen och hur man bygger upp den pedagogiska miljön är en viktig faktor för att förändra skolans praktik och inte datorn.18

Kjällander har i sin avhandling gällande om hur elever skapar mening, interagerar och lär sig i klassrummet när de använder digitala resurser i ämnet SO, kommit fram till i sitt resultat att elevernas interaktion kännetecknas av samarbete, informativt språk, impulsivitet och även högt tempo. Eleverna som befann sig i åldrarna 6-11 år, kommunicerade hela tiden med varandra och uppmärksammade ständigt både sina egna och de andras representationer. Vidare visade avhandlingen, som också observerade elever i ålder upp till 19 år, att lärarens roll var som en handledare åt eleverna och att rollen var mer jämntillstånd gentemot eleverna genom att läraren använde samma informationskanaler som sina elever. Eleverna visade också vad de förstår genom att visa hur de förstår. Detta visade eleverna när de valde uttryck och ett innehåll via den digitala lärresursen.19

17 Teknikdelegationen (2010) s. 79
18 Jedeskog/Näslund (2009), Unga lärare vill se syftet med tekniken, (red. Vestin) s. 107
19 Kjällander (2011) s. 155-157
att vissa av resurserna som togs i bruk av eleverna när digitala verktyg användes i lärandeaktiviteten, var annorlunda än när digital teknologi inte användes. En resurs kunde vara att eleverna skulle försöka enas om hur utformningars perspektiv såg ut för att förstå uppgiften som därigenom blev en resurs för elevernas fortsatta arbete. Lantz-Andersson kunde se att det digitala verktyget blev en bidragande del i elevernas meningsskapande. Vidare menar Lantz-Andersson att studier visar att elever är skickliga användare av digitala verktyg och att sättet de lär sig på kommer att ändras. Men förmågorna kring att läsa, skriva och räkna kan inte paketeras som kunskap i en ny mediaform.20

Skarin har på Skolverkets uppdrag gått igenom ett antal studier och forskningsrapporter där syftet var ge en bild av vilka förutsättningar IT/teknik kan hjälpa elevernas till ett positivt lärande och därmed måluppfyllelse. 21 rapporter varav fyra från Norden, tio från Storbritannien två från USA och fem från övriga Europa/OECD är med i analysen. Författarens analys visar att det inte finns ett automatiskt samband mellan ett resultat och ett IT-användande. Men om däremot IT-användandet sätts i ett pedagogiskt sammanhang visar det ett tydligt positivt samband mellan IT-användande och både mätbara och/eller upplevda resultat. Faktorer som benämns är motivation, stärkt begreppsmässig förståelse och en ökad individualisering. Skarin menar att ett antal förutsättningar bör finnas med för att de positiva effekter ska uppstå är bland annat att strategier behövs både nationellt och lokalt i skolan för hur IT ska användas i skolarbetet. Studierna visar att man kan inte bara fokusera på tekniken i sig utan man måste ha ett fokuserat arbete kring själva teknikanvändningen förenad till en pedagogisk idé. En rapport visar att det är den sammanlagda inverkan av ökade IT-inвестeringar och även en positiv och gynnande skolmiljö som skapar positiva effekter i de tidigare årskurserna av grundskolan. Skarins analys visar också att lärarens egen pedagogiska syn spelar en viktig roll när det gäller att skapa lärmöjligheter när man använder teknik. Lärarna behöver betydande kunskap om IT för att kunna välja lämpliga lärresurser.21

Sammanfattningsvis visar forskning och forskare på att bristen av IT i undervisningen kan bero på tillgången till IT på skolorna och även avsaknad av fortbildung.

20 Lantz-Andersson (2009) s. 121-124
21 Skolverket (2007) s. 4, 5, 6, 14

2.2 Teoretiskt perspektiv

IKT kan genom att det används på ett reflekterande sätt dels stärka elevernas kunskapsnivåer dels träna på färdigheter som kan vara användbara i ett kommande arbetsliv. Det kan leda till en lärprocess där eleven väntas vara aktivt deltagande. Detta kan då både stimulera och motivera eleven till färdighetsträning och kunskapsinhämtning.25

22 Säljö/Näslund (2009), Digital kompetens blir ny basfärdighet (red. Vestin) s. 114
24 Säljö/Näslund (2009), Digital kompetens blir ny basfärdighet (red. Vestin) s. 116
25 Teknikdelegationen (2010) s. 91
Eva Riesbeck skriver i *Matematik - ett grundämne* att det är viktigt att eleverna vet var de kan hitta information om sådant de inte förstår. Eleverna kan hitta information på till exempel Youtube eller någon annan webbsida och i sin tur bidra med sina kunskaper till andra elever.26

Internet har stor betydelse för undervisningen påpekar Åkerlund där internetlandskapet ger elever och lärare möjligheter att hitta nya perspektiv och där variationsbredden är stor. Det sociala sammanhanget är starkt avgörande för hur man lär och vad man lär. Förändringen med webbsamhällen, bloggar, chattar och onlinespel är det sociala sammanhang barn och unga lever i idag. Dessa sociala gemenskaper är något som skolan bör använda sig av för en bra skol- och lärmiljö.27

När det gäller samspelet via IKT menar forskaren Mikael Alexandersson att det finns fyra saker som han ser som centrala när vi har tillgång till en snabb och föränderlig teknik, kommunikation via nätet och digitala medier. Dessa är interaktivitet, socialitet, intimitet och mentalitet. Samspelet mellan lärare och elev eller mellan en grupp elever finns alltid när de har en dator framför sig.28

26 Riesbeck (2011), Lärande i matematik genom redskap (red. Bergius, Emanuelsson, Ryding) s. 302
27 Åkerlund (2011), Ungas lärande i sociala medier (red. Alexandersson & Hansson) s. 29
28 Alexandersson/Näslund (2009), Wikipedia utmanar skolans slutna rum (red. Vestin) s. 105
Devlin säger också att tekniken gör mer för lärarna nu än vad lärarna brukade göra. Han menar att dagens lärare bör inte spendera för mycket tid framme vid tavlan och förklara grundläggande tekniker. Detta är något som eleverna kan hitta i videor och på webben. Där kan eleverna i sin takt och utan att bli störda av andra elever stanna och ta om samma sekvens så många gånger som behövs. Vidare menar han att lektioner där läraren vet vad eleverna kan och kan förutse rimliga missuppfattningar som kan uppstå är bra utformade lektioner.29

Alla ställer sig dock inte positiva till IKT och matematik. Ola Helenius (doktor i matematik och biträdande föreståndare, NCM) skriver i en ledare i tidningen Origo #1, 2013 med rubriken ”IKT inte självklart i matten” och menar att han är lite misstänksam till revolutionspotentialen hos IKT. Å ena sidan säger Helenius att ökningen av antalet datorer och relaterad teknik i skolan bland annat är en smart marknadsföring av företag som vill tjäna pengar. Han menar också att denna teknik inte automatiskt leder till ökat lärande hos eleverna. Vidare säger Helenius att när matematikundervisningen utförs på ett vanligt och bra sätt så är den svårslagen. Fast å andra sidan kan inte skolan avgränsas från samhället där datorer och IT erövrar allt fler områden. Helenius skriver att matematikundervisningen måste relateras till hur matematik används i samhället och tar elevernas erfarenhetsvärld som utgångspunkt. Här ser jag en motsättning. Ska vi förhålla oss till elevernas verklighet och erfarenhetsvärld måste vi också förhålla oss till vad som ingår i den. Skolan får fler datorer men läraren kan inte använda dem.30

I lärandet använder vi oss av olika redskap. Säljö säger att man brukar skilja på två redskap. De fysiska och de språkliga. De kan också kallas för artefakter. Det som är karakteristiskt för de fysiska artefaktarna är att de är tillverkade och anpassade för ett speciellt ändamål och det innebär också att vi tillgodogör oss delar av samhällets gemensamma erfarenheter. Detta gäller även de språkliga artefaktarna som är formade av människor och vuxit fram i olika gemensamma gemenskaper. Vi använder oss alltid av redskap och de fysiska och språkliga artefakterna går hand i hand och utgör kulturella redskap, menar Säljö.31 Vidare säger Säljö att de kulturella redskapen är det

29 Devlin (2011) s. 181
30 http://www.lararnasnyheter.se/origo/2013/02/02/ikt-inte-sjalvklart-matten
31 Säljö (2005) s. 28-34
betydelsefullaste uttrycket för vårt gemensamma lärande och när vi tar till dem använder vi samhällets samlade erfarenheter. Tiden till huvudräkning som vi förr ägnade mycket tid till ersätts idag till att analysera och förstå texter och till problemlösning av olika slag. Denna specialisering leder till krav på hur man ska behärska olika redskap och den förtrogenhet som kommer med dem.⁹²

Jönsson menar att matematik och IKT hör ihop och att de potentiella verktyg som finns bör användas. Matematik är viktig för problemlösning och i samhället görs matematiska beräkningar allt ifrån vardagsekonomi till industritillämpningar och då används ofta datorer och andra digitala verktyg. Uppgifter som förr gavs till eleverna på papper kan de numera bara slå in på sina mobiltelefoner. Jönsson säger att detta kanske kan ge mer tid till att diskutera.³³

Kairos Future, som är ett internationellt konsult- och forskningsföretag och som hjälper företag att forma och förstå sin framtid (http://www.kairosfuture.com), har gjort en studie, Skola 2021. Vilket visade att IT kan vara den drivande kraft som i högst utsträckning kommer att förändra skolan de framtida 15 åren.⁹⁵

³² Säljö (2005) s. 229
³³ http://www.lararnasnyheter.se/origo/2013/01/31/ikt-ger-mer-tid-tala-matte
³⁴ http://www.lararnasnyheter.se/lararnas-tidning/2011/12/01/it-demokratifraga
³⁵ Grundskoletidningen, 4/2012, s. 16
Matematikdelegationen skriver i ett betänkande att undervisningen i matematik tenderar att handla om ”tyst räkning”. Tillgång till reflektion, samtal och samarbete är en förutsättning i all undervisning. Det handlar om mer än att bara förse sig med datorer i klassrummen. Det gäller att utveckla miljön runtomkring, kommunikationen mellan både lärare och elev och mellan elever kan med rätt använd IKT bli mer kreativ.36 Säljö menar att man måste arbeta med språket som ett medierande redskap där man till exempel kan arbeta med både tecken och symboler. Han menar att utbildning är till största delen kommunikativ.37 I en studie av koordination av perspektiv i klassrumskommunikation som gjorts av Säljö, Riesbeck och Wyndhamn, visade det sig att det var lätt att få eleverna att samarbeta och samtala. Men det som är viktigt är att få eleverna att tala det matematiska språket och att använda sig av matematiska begrepp. De menar att om man nöjer sig med att använda ett vardagligt språk finns risken att man stannar upp i sitt lärande. Man kan finna grunden till analysen och generaliseringen i det matematiska språket.38

36 Teknikdelegationen (2010) s. 88, 91
37 Säljö/Riesbeck/Wyndhamn (2003), Dialog, samspe och lärande (red. Dysthe) s. 223
38 Säljö/Riesbeck/Wyndhamn (2003), Dialog, samspe och lärande (red. Dysthe) s. 239-240
39 http://www.lararnasnyheter.se/origo/2013/01/31/ikt-ger-mer-tid-tala-matte

40 Taflin (2007) s. 21, 99
41 Taflin (2007) s. 108
42 Taflin (2007) s. 94
3. Metod

Efter att ha börjat på en ny arbetsplats hösten 2012 har jag fått en kollega som arbetar med Wordwall och LynX i sin matematikundervisning. Min nyfikenhet på Wordwall och LynX är stor och med hjälp av min handledare kom jag fram till att undersöka hur undervisningen kan se ut i matematik med hjälp av Wordwall och LynX i en årskurs två. Både Wordwall och LynX är program som används genom datorn och med fördel tillsammans med en interaktiv skrivtavla.

3.1 Analys

Jag har valt att göra en fallstudie som visat sig lämplig när man arbetar ensam då jag kan undersöka avgränsade aspekter lite mer på djupet under en begränsad tid. Med fallstudie menas att man inriktar sin undersökning mot en viss sak. Fallstudien innebär att man konsekvent samlar information, undersöker variabler och gör en ordentlig planering av sin undersökning och inte bara gör en beskrivning. I min undersökning ska jag göra observationer och intervjuer som oftast används i fallstudier.43 Fallstudiens fördel är att den gör det möjligt för mig att koncentrera mig på några få händelser.44 Redan innan observationernas början bestämde jag mig för att titta på samspel, samtal, problemlösningsstrategier och om matematiska begrepp användes i samband med att eleverna arbetade med digitala verktyg. Dessa är viktiga för mig i min egen undervisning och kändes intressanta för mig. Dessa observationspunkter har alltså inte kommit efterhand som jag observerat utan dessa var jag medveten om att jag ville studera hos eleverna. Bell skriver att man i en fallstudie metodiskt samlar in den information som man planerar noggrant i sin undersökning. Bell menar också att ett fall handlar om samspelet mellan olika detaljer i en viss situation. Man koncentreras sig på en speciell händelse, i mitt fall samspel, samtal, problemlösningsstrategier och om matematiska begrepp används och försöker få fram de faktorer som påverkar på händelsen i fråga.45

43 Bell(2000) s.16-17
44 Bell (2000) s. 16
45 Bell (2000) s. 16
3.2 Observation

I mina observationer har jag tittat på följande: om Wordwall och LynX ger förutsättningar till samspel när eleverna arbetar i klassrummet, om eleverna samtalar med varandra och hur det ser ut och om jag ser problemlösningsstrategier och om matematiska ord och begrepp används.

Jag har valt att göra observationer så att jag i förväg har kunnat bestämma vad jag vill observera. Jag valde att observera då jag fick möjlighet att undersöka det jag hade bestämt kring samspel, samtal, problemlösning och matematiska begrepp. Mina observationer var strukturerade och då jag bestämt vad jag ville titta på och vilka situationer jag ville observera.

3.3 Intervju

Jag har valt att komplettera mina observationer med intervjuer med både elever och lärare. Jag såg att jag i mina intervjuer kunde få svar på de frågor som jag tänkte jag ville ställa och för att få en större tillförlitlighet i min undersökning. I mina intervjuer ville jag både få komplettering till mina observationer men även en bekräftelse på vad jag sett. Jag valde frågor med låg grad av strukturering då jag ville ha frågor utan fasta svarsalternativ och kunde ställa följdfrågor vid behov. Standardiseringen var däremot hög. I mina intervjuer med eleverna valde jag att fokusera på om eleverna såg att de nådde målen för arbetsområdet när de arbetade med Wordwall och Lynx, hur de upplevde att arbeta med problemlösning tillsammans med Wordwall och LynX, om de deltog i samtalen och var med och löste uppgifterna och till sist vad de hade lärt sig. (bilaga 1).

I intervjun med läraren handlade frågorna om eleverna såg kopplingen mellan Wordwall och LynX och det de skulle bedömas i. Jag ville se om läraren upplevde att arbetet med problemlösning fungerade tillsammans med datorerna och om eleverna medverkade i samtalen. Om eleverna fick möjlighet att lösa problem tillsammans med sina klasskamrater och om eleverna och läraren såg att målen uppnåddes och till sist vilken matematik som lärdes ut. (bilaga 1)

46 Patel & Davidson (2003) s. 90
47 Patel & Davidson (2003) s. 72
3.4 Urval

3.5 Genomförande

Målet var att försöka synas så lite som möjligt för att det som jag observerade skulle bli tillförlitlig och att de beteenden jag observerade skulle bli så normala som det gick.49 Bell menar att vid mindre undersökningar är tillfällda urval accepterat under premiss att man redogör noga för hur man gått tillväga och att man är medveten om

48 Observation 1, 130415
49 Bell (2000) s. 145
de begränsningar de innebär.50

Fördelen med att utföra intervjuerna med en viss struktur och fokus är att jag gjorde strukturen i förväg och ramarna kring intervjuerna. Detta gjorde att analysen blev lättare att utföra.52

Klassen som jag observerade och intervjuade är en klass på den skola jag arbetade på. Jag var ny på skolan sedan en termin tillbaka och hade ingen personlig kontakt med eleverna i klassen och kände endast några till namnet. Jag hade alltså ingen nära relation till någon av eleverna i klassen. Läraren var en kollega i mitt arbetslag som

50 Bell (2000) s. 111

51 Bell (2000) s. 122

52 Bell (2000) s. 122

3.6 Etiska ställningstaganden

3.7 Wordwall

På min kommuns hemsida går det att läsa följande om Wordwall:

"Wordwall är en programvara som används tillsammans med din Cleverboard. Här är det enkelt att skapa interaktivitet i klassrummet, inte bara statiska bilder, utan med hjälp av interaktiva celler eller knappar. På dessa kan man lägga in bilder, text och länkar. På ett enkelt sätt sedan kan man skapa memory-spel, glosförhör, hitta ord, aktuella nyheter, quiz m.m".55

Wordwall används med fördel tillsammans med interaktiv tavla.

53 Bell (2000) s. 39
54 http://www.vr.se/download/18.3a36c20d133af0c12958000491_s. 49
55 http://www.halmstad.se/download/18.6a57cb8413baec2c69533a9/Kurskatalog+Datastudion-Skoldatateket+vt+13+121218.pdf

3.8 LynX

LynX är ett program som har utvecklats speciellt för interaktiva tavlor. LynX är ett visualiserat program. Syftet med programmet är att ge pedagogen/användaren frihet att göra och skapa egna lektioner. För att underlätta att börja använda datorn i undervisningen så har gränssnittet tydliga spår av ”office-paketet” för de som använder LynX ska känna igen sig. LynX är utvecklat så att det är pedagogen som själv skapar lektionerna i LynX. I programmet finns ett stort urval av clipartbilder.

Det finns också ett stöd för omvandling av Handskrift och handritade former till datatext. En handritad cirkel i datorn kan omvandlas till en ”perfekt” cirkel.

På min kommuns hemsida kan man läsa att LynX 4 är en programvara som ger dig möjlighet att kunna utnyttja din skrivtavla på ett optimalt sätt.
3.9 Reliabilitet

Reliabiliteten är ett mått på om mina observationer gav samma resultat vid olika tillfällen under samma omständigheter. Tillförlitligheten gällande observationerna såg jag som stor. Jag befann mig på samma plats vid alla observationer utom vid den sista. Elevintervjuerna gjordes en och en för att på så sätt öka reliabiliteten och frågorna var av låg grad strukturerade till sin karaktär. Eleven fick själv svara utan veta vad de andra eleverna svarat på frågorna. En risk finns att eleverna gett de svar på frågorna som de tror jag ville ha.61

61 Bell (2000) s. 89
4. Resultat

Undersökningen har gjorts för att jag ville svara på mina tre frågeställningar, hur påverkar digitala program som verktyg matematikundervisningen, hur ser eleverna på detta sätt att arbeta och vad säger läraren om att arbeta så här. Jag har valt att dela in i redovisningen i olika kategorier; problemlösning, samspel och samtal och matematiska ord och begrepp. Jag har utgått från fyra observationer och intervjuer med fyra elever och en lärare.

Första observationen som kan ses som en pilotobservation, var mer en genomgång av materialet och kommer inte att användas i resultat, analys eller diskussion. Övriga observationer har skett vid tre tillfällen när eleverna arbetat med LynX och den fjärde och sista observationen när eleverna arbetat med Wordwall.

Eleverna arbetade två och två vid en dator med programmet LynX som är ett rörligt program. Vid alla tillfällen inleddes lektionerna med att läraren gick igenom uppgiften tillsammans med eleverna.

I tre av fyra observationer gick de igenom målen också i början av lektionerna. Eleverna hade arbetat med Wordwall före mina observationer medan programmet LynX var nytt för dem.

Programmet LynX användes vid mina observationer mest som ett ritprogram i uppgiften, även om det fanns möjligheter att göra sina uträkningar i programmet, var det inte mer än några par som gjorde det. Troligtvis beroende på att eleverna inte hade tillräcklig kunskap om programmet och dess möjligheter.
4.1 Problemlösning

Uppgifterna till eleverna var för en del elever av problemlösande karaktär och enligt Taflin är en problemlösningsuppgift först ett problem när eleverna måste göra en särskild ansträngning för att lösa uppgiften.62 Uppgiften i LynX var för några elever medvetet ganska lätt att lösa. Problemet i uppgiften kan jag se var mer av den karaktären att de var tvungna att samtala om vad de ville rita, hur ritningen skulle se ut, hur mycket allt kostade och hur mycket pengar de hade kvar. De fick också bestämma vilket räknesätt de skulle använda.

Jag kan dock se att det matematiska resonemanget som Taflin också talar om fanns med i mina observationer.64 Ett exempel är när en grupp skulle redovisa sin lösning i programmet Wordwall, diskuterade de hur de skulle gå tillväga. De bestämde sig efter att ha diskuterat för att både rita och skriva. Vid samma tillfälle skulle de se på svaret som fanns på skrivtavlan för att jämföra med sin egen uträkning och såg att svaret var uträknat med multiplikation. De själva hade gjort uträkningen med addition. De diskuterade i gruppen och kom fram till att de gjorde det enkelt första gången.65

Uppgiften kan vara en introduktion till kommande uppgifter där en större ansträngning krävs.

Läraren säger också att de inte jobbat så mycket med problemlösning kopplat till datorer men att undervisningens mål kan förenas med det eleverna bedöms i genom

62 Taflin (2007) s. 21
63 Observation 4, 130527
64 Taflin (2007) s. 21
65 Observation 4, 130527
att använda IKT och problemlösning. Läroplanen för grundskolan, förskoleklassen och fritidshemmet säger att skolan ska ansvara för att varje elev kan använda modern teknik som ett verktyg för kunskapssökande, kommunikation, skapande och lärande och det ser jag att läraren arbetar efter i min undersökning.66

När det gäller problemlösning säger Jönsson att ett sätt att koppla problemlösning och IKT kan vara att göra en skärminspelning med ljud där man med ljud formulerar sig och berättar sina tankar.67 Eleverna i min undersökning berättade muntligt i sina redovisningar om hur de kommit fram till sina lösningar. Med det menar jag att de gick fram parvis till skrivtavlan och redovisade inför klassen, de berättade muntligt och hade antingen ett papper som stöd som visades med dokumentkamera på skrivtavlan eller ett USB-minne via datorn till skrivtavlan. I observationerna såg jag att eleverna räknade ut sina uträkningar i huvudet och använde sig av papper och penna när de gjorde anteckningar på vilken summa de befann sig på. De använde sig således inte av LynX när de gjorde sina uträkningar. Detta även om en elev hittade en miniräknare i programmet, ”en miniräknare! Ska vi räkna ut så vi får exakt?, -Nej”, svarar den andra eleven.68 De elever som gjorde sina uträkningar i programmet var inte de elever jag observerade utan jag såg endast deras redovisningar. De elever som lyssnade på redovisningarna fick möjlighet att ställa frågor och komma med tips och idéer till sina klasskamrater.69 Jag såg att även om uppgifterna var enkla för vissa elever låg det en utmaning i att de kunde förklara för de elever som inte förstod eller att de förklarade i redovisningen så att det framgick klart hur de tänkt och hur de löst uppgiften så att alla klasskamrater förstod. Utfallet gör också att jag kan se att eleverna utvecklar sin problemlösningsförmåga genom att de visat olika strategier att räkna ut och presentera svaren i redovisningarna.

I intervjuerna med eleverna angav alla fyra att de fick möjlighet att lösa problem tillsammans med sina klasskamrater. Hur ser då eleverna på detta sätt att arbeta? En av eleverna svarar på frågan hur det är att arbeta med datorerna när de arbetar med problemlösning att ”datorn är bäst när vi löser problem”.70 Intervjuerna pekar på att de fyra eleverna tycker att det är bra att arbeta vid datorn när de arbetar med problemlösning i matematik och de säger också att de är delaktiga i arbetet. I

66 Läroplan för grundskola, förskoleklassen och fritidshemmet (2011) s. 14
67 Jönsson (2012) s. 254
68 Observation 2, 130422
69 Observation 3 och 4, 130429 och 130527
70 Intervju med elev, 130530
intervjuerna framkom att en elev tyckte att datorerna i undervisningen var bra men gillade matteboken bäst. En förklaring är att uppgifterna tolkats som enkla för en del elever. IKT i undervisningen passar inte alla elever och därför är det viktigt att ge eleverna olika möjligheter till att lära.71

Datorn med uppgiften hade de framför sig och några använde datorn till att skriva sina redovisningar i, även om papper och penna var överrepresenterade vid något tillfälle. Devlin säger att teknologi förbättrar undervisningen utan för den delen att den behöver ersätta något annat. De digitala möjligheterna eleverna får erbjuder ytterligare ett verktyg och kompletterar de andra verktygen som t.ex. lärobok, papper och penna. Detta kan stärka elevernas lärande.72 Även Jedeskog menar att den pedagogiska synen och hur man bygger upp den pedagogiska miljön är en viktig faktor för att förändra skolans praktik och inte datorn.73 Detta såg jag bevis på i min undersökning. Även i Skolverkets rapport där Skarin analyserat flera rapporter och studier visade att lärarens pedagogiska syn spelade en viktig roll när det gällde att skapa lärmöjligheter tillsammans med IT.74

Några elever hade ibland svårt att behålla fokus och kom in på annat än matematik och uppgiften de fått.75

4.2 Samspel och samtal

De elever jag observerade hade alla en dialog och ett samspel med varandra under observationerna. Ett exempel var vid den fjärde och sista observationen där jag kunde se att ett par flickor var tysta till en början men blev engagerade av de andra i gruppen. Det fanns möjlighet att samtala och det var tillåtet att resa sig från sin plats för att hjälpa eller bli hjälp. Ett par samtalade om de skulle göra sin uträkning på datorn eller på papper.

Möjligheterna till interaktion, samtal, samspel och reflektion var många när eleverna arbetade två och två vid datorerna och skrivtavlan och att det tillhör deras erfarenhetsvärld.

71 Intervju med elev, 130530
72 Devlin (2011) s. 173
73 Jedeskog/Näslund (2009) Unga lärare vill se syftet med tekniken (red. Vestin) s. 107
74 Skolverket (2007) s. 6
75 Observation 1 och 2, 130415 och 130422
Till exempel samtalet och samspelet mellan två pojkar som är noga med att spara för varje gång de lägger till något i programmet LynX, efter de reflekterat över att vara noga med just att spara då tidigare arbeten försvunnit. Dialogen såg ut så här; ”Rita först ett träd sen sparar vi”. Pojken ritar ett träd. ”Spara, spara”, säger den andra pojken. ”Ja, nu kan vi spara”, säger pojken som ritat. ”Sudda bort solstolen”, pojken vid datorn suddar. De tittar både i programmets verktygsfält. Pojken vid datorn hämtar ett worddokument med uträkningen på. ”Solstolen har vi med. Då får vi dra av 100 kr, det blir 2500 kr”. De ändrar i worddokumentet och tar bort solstolen.
Eleverna samspelade och samtalade hela tiden med varandra.
Jag såg också att uppgifterna engagerade eleverna. De ville gärna använda datorn att rita i och skriva i. I Skarins analys nämns motivation som en faktor på positivt samband mellan IT-användande och resultat. När läraren stannade till vid ett av paren som jag observerade var bågge engagerade att visa vad de gjort och ville visa hur de räknat ut sin uträkning.
Ett annat par ägnade stor del åt att samtala hur de skulle rita. Mycket tid ägnades åt detta innan de kom överens.
Det fanns de elever som till en början var tysta och inte visade så mycket engagemang men blev engagerade av varandra genom att de ställde frågor, gav varandra idéer, dels av de andra eleverna dels vad gäller formen i undervisningen.

76 Observation 3, 130429
77 Teknikdelegationen (2010) s. 91
78 Teknikdelegationen (2010) s. 87
79 Skolverket (2007) s. 4
Eleverna i observationerna går i en tvåa och det fanns de elever som har svårt att hålla upp koncentrationen längre stunder. Det fanns de som kunde sitta längre stunder utan att tappa koncentrationen och de som inte kunde sitta så länge. Jag kunde även se att just själva ritandet som några ägnade mycket tid åt kunde bero på att det var något nytt som fångade dem och att det är nyhetens behag. Jag såg att ritandet var för vissa elever positivt och ökade engagemanget. När det gäller programmet LynX och rutiner med att tex spara arbetet såg jag att det sannolikt kommer att öka ju mer de arbetar med programmet.

De sade också att de nådde målen genom att de arbetade med LynX och Wordwall, förutom en elev som sade att de inte gjorde det riktigt hela tiden utan ibland gjorde eleven annat. När det gällde att vara med att samtala när de arbetar med LynX och Wordwall menade tre av eleverna att de gjorde det. Den fjärde svarade att hon inte samtalade så mycket. En elev berättade på frågan om vad de lärt sig med att arbeta med LynX och Wordwall, blev svaret att han lärt sig att arbeta två och två.

Alexandersson menar att så fort man sitter framför en dator två och två så finns det ett samspel.

Vidare sade läraren att undervisningens mål uppnåddes när eleverna kunde berätta hur de löst uppgifterna och hur de kommit fram till dem. Läraren ville också se att eleverna berättade för varandra och när de andra förstätt och kunde följa deras tanke syntes det att målen var uppnådda. Läraren påpekade att samspel och samtal gynnades mer än i traditionell undervisning, som katederundervisning och matematikbok.

Läraren poängterade att eleverna hade mycket lättare att hjälpa varandra och reste sig från sin plats och samtalade med sina klasskamrater. På frågan om läraren såg att samspel och samtal mellan elever gynnades mer än i traditionell undervisning, svarade läraren: "Ja, det tycker jag. De har mycket lättare att hoppa upp från sin plats och visa sina kamrater. Det finns mer hjälpsamhet och uppfinningsrikedom och större öppenhet".

Teknikdelegationen menar att rätt använd IKT kan göra kommunikationen mellan elev-elev och elev-lärare mer produktiv/nyskapande. Läraren såg att eleverna diskuterade med varandra och att de tyckte det var roligare.

Läraren upplevde att det var ett tyngre arbete med matteböckerna.

80 Alexandersson/Näslund (2009), Wikipedia utmanar skolans slutna rum, (red. Vestin) s. 105
81 Intervju av lärare, 130625
82 Teknikdelegationen (2010) s. 91
4.3 Matematiska ord och begrepp

Eleverna berättade i intervjuerna att de lärt sig hitta nya saker på datorn, att rita i den, de hade lärt sig rätt mycket matte och mer multiplikation. En elev berättade på frågan vad han lärt sig via programmen LynX och Wordwall, ” det är plus och minus. Det är inte så himla mycket matte, man får rita. I wordwall är det plus, minus, multiplikation, division, addition och subtraktion".

83 Observation 2, 130429
84 Säljö/Riesbeck/Wyndhamn (2003), Dialog, samspel och lärande (red. Dysthe) s. 240
85 Observation 3, 130422
86 Observation 4, 130527
87 Intervju av elev, 130530
Läraren ställde frågor om de bestämt tillsammans, hur de gick tillväga om de inte tyckte likadant och om de lyssnat på varandra. Efter att de gjort sin redovisning fick övriga elever ställa frågor eller ge tips hur de kunde gjort istället. Både de som redovisat och de som lyssnat var tvungna att reflektera över uppgifterna. De gav varandra positiv och negativ feedback. En elev föreslog att de kunde ställt upp talet istället för att bara redovisa svaret som de räknat i huvudet. En annan elev föreslog att de kunde skrivit med större storlek så att de inte behövde zooma. En tyckte att de skulle titta på publiken under redovisningen. En reflektion en grupp gjorde som kom fram under redovisningen var att de gjort uträkningen med addition medan svaret var i multiplikation men att svaret var samma. Eleverna visade på olika strategier hur de räknat ut och presenterat uppgifterna. Några har bara använt sig av addition medan andra har använt både addition och multiplikation. En grupp visade hur de först gjort en uträkning med subtraktion som blev väldigt rörig. De visade sedan hur de gjort istället för att göra uträkningen enklare där de använde sig av multiplikation och addition. De visade på hur de reflekterat och om vilken strategi i uträkningen som visade sig vara bäst.

I en intervju menar en elev att det inte är så himla mycket matte utan man får rita och plus och minus. Detta gäller programmet Lynx. Några elever berättar att de lärt sig hitta nya saker på datorn och att rita på den, de hade lärt sig rätt mycket matte och mer multiplikation. Två av eleverna tyckte att de mest ritade i programmet LynX och att det inte var så mycket matte. Däremot tyckte en av dessa två elever att det var mycket matte i programmet Wordwall.

När det gäller programmet Wordwall svarar eleverna att de lärt sig multiplikation, addition, subtraktion och division. De hade lärt sig matte på datorn och hur man gick in på programmet. En elev berättade att man kunde trycka på talen man skulle räkna ut och då fick man svaret och att det inte var bra. På frågan om varför han tyckte att det inte var bra var det för att när man sedan hade prov kunde man ingenting, man kunde med andra ord fuska.
5. Slutsats och diskussion

Jag ville med min undersökning försöka få svar på mina frågeställningar. Det har varit en intressant resa som gett mig frågor efterhand och bara ökat mitt intresse för IKT i undervisningen och de vinster som jag upplever kommer med den.

Frågorna jag ställde inledningsvis var: hur påverkar digitala program som verktyg matematikundervisningen? Hur ser eleverna på detta sätt att arbeta? Vad säger läraren om att arbeta så här?

5.1 Problemlösning

Ett par olika problemlösningsstrategier visade sig när eleverna redovisade sina uträkningar för varandra, även om många använde sig av samma. De olika strategierna eleverna använde sig av var att de använde sig av olika räknesätt som addition eller multiplikation när de visade sina uträkningar av hur många buskar och växter de handlat, när de arbetade med programmet LynX. Ett par visade att de först hade använt sig av subtraktion i uträkningen och sett att det blev röligt. De visade då hur de gjort istället där de använt multiplikation och addition. De flesta använde dock addition. Eleverna använde sig också av olika verktyg i sina redovisningar. Några använde sig av papper och dokumentkamera och skrivtavlan, medan andra använde datorer och skrivtavla. Generellt tror jag att man som lärare måste poängtera för eleverna att det finns olika strategier och kanske göra det, som i det här fallet, i slutet av varje redovisning för att framhålla att det finns olika verktyg och sätt att lösa problem.

5.2 Samspel och samtal

I mina fyra observationer har jag sett att eleverna hade stor möjlighet att både samspela och samtala när de använde digitala program i matematikundervisningen.

93 Lantz-Andersson (2009) s. 121-122
94 Lantz-Andersson (2009) s. 124
95 Skolverket (2007) s. 5
96 Intervju med lärare, 130625
Jag såg dock att dator och skrivtavlan inte var en förutsättning för att eleverna ska samtala och samspela, utan att det var ett verktyg av flera. Någon elev menade att hon inte pratat så mycket, men vid min observation såg jag en delaktighet och ett samspel och samtal med klasskamraten, även om klasskamraten talade mest. Om jag jämförde med enskilt arbete i matteboken såg jag att arbetet två och två vid datorn gav en annan undervisningsmiljö som inte bara tillåter utan förutsätter samtal mellan elever. Eleverna kunde givetvis arbeta två och två utan dator och ändå uppfylla målet med samspel, samtal i arbetet med problemlösning och användningen av matematiska ord och begrepp. Jag såg dock att många elever fann arbetet vid datorn som lustfyllt och att det var något de kände sig bekanta med. Detta bekräftades i mina intervjuer med eleverna. Forskaren Mikael Alexandersson menar att samspel alltid finns när man har en dator framför sig, mellan elev-lärare eller en grupp med elever. Dessutom står det i våra styrdokument att vi ska använda modern teknik i undervisningen. I samspelet såg jag också att eleverna vill ta ansvar för att utföra uppgiften innan de klackade för att se svaret i uppgiften i Wordwall. Eftersom eleverna vid detta tillfälle skulle redovisa hur de kom fram till svaret var de tvungna att samtala och reflektera över hur de tänkte ut lösningen och då spelade det ingen roll att de tittat på svaret först eftersom lösningen inte stod med och hur man kom fram till svaret. Jag såg vidare att det kanske inte hjälpte att bara ge eleverna en dator att arbeta vid utan att det behövdes tid för reflektion och att på något sätt få framföra vad man kommit fram till och att man fick möjlighet till samarbete med en klasskamrat. Precis som Jedeskog säger måste man också ändra miljön för undervisningen. Även Skarins analys visar att lärarens egen pedagogiska syn spelar en viktig roll när det gäller att skapa lärmöjligheter tillsammans med IT. Att låta eleverna få redovisa för hela klassen eller för sin lärare eller några klasskamrater såg jag som en förutsättning för läraren för att se om eleven förstått och vidare nått målen för undervisningen. Jag tror också att man måste börja någonstans och att man lär sig på vägen. Att ge eleverna tid att reflektera visades dels i början av lektionen då de diskuterade om vad de gjort gången innan och lektionens mål dels i slutet av vissa lektioner då de talade

97 Alexandersson/Näslund (2009), Wikipedia utmanar skolans slutna rum (red. Vestin) s. 105
98 Lgr 11 (Läroplan för grundskola, förskoleklassen och fritidsstätten 2011) s. 14
99 Jedeskog/Näslund (2009), Unga lärare vill se syftet med tekniken, (red. Vestin) s. 107
100 Skolverket (2007) s. 6

När det gäller samspel och samtal svarade en elev på en fråga i intervjun om vad de lärt sig, att han lärt sig arbeta två och två. I elevgruppen som jag observerade framme vid skrivtavlan visade eleverna sig vara medvetna om att alla skulle vara delaktiga och påtalade detta för varandra. Kjällander såg också i sin avhandling att eleverna interagerade med varandra, samarbetade och hade ett högt tempo.

101 http://www.lararnasnyheter.se/origo/2013/01/31/ikt-ger-mer-tid-tala-matte
102 Player-Koro (2012) s. 95
103 Skolverket (2007) s. 5
104 Kjällander (2011) s.155
De samtal mellan eleverna jag såg kunde också handla om hur de skulle presentera sin redovisning och hur de skulle gå tillväga när de ritade i LynX. De bestämde sig mer eller mindre tillsammans vad de skulle rita och räknade ut vad det kostat. De gav varandra förslag på vad de kunde göra. Jag såg också ett par som ägnade stor del åt att diskutera hur de skulle rita i programmet LynX. De ägnade mycket av tiden till att rita, sudda och göra om. De var inte alltid överens om det var tillräckligt bra. Det kan vara lätt att fastna i ritandet och jag såg att de ägnade mycket tid åt det och inte åt själva problemlösningen och matematiken. Ett annat par kom på andra saker att rita och hittade på nya saker som de ville ha med. Samma par diskuterade hur mycket det nya skulle kosta och rimligheten i det. De fortsatte även att tala om hur mycket pengar de gjort av med.

Är det då som Helenius skriver i en ledare i tidningen *Origo* #1, 2013, att ökningen av datorer i undervisningen bara är en smart marknadsföring av företag som vill tjäna pengar? Huruvida det är så kommer inte att besvaras här, även om jag kunde se att undervisningens mål i form av samtal, samspel, samarbete och reflektion gynnades av att datorer och skrivtavla användes. Helenius skriver också att skolan inte kan avgränsas från samhället där datorer och IT erövrar allt fler områden.105

5.3 Matematiska ord och begrepp

Jag kunde se att eleverna använde sig av matematiska ord och begrepp när de arbetade med programmet LynX. Det vardagliga språket användes mestadels när de arbetade

105 http://www.lararnasnyheter.se/origo/2013/02/02/ikt-inte-sjalvklart-matten
med uppgifterna och de matematiska begreppen främst när läraren stannade till och ställde frågor eller hjälpte dem om de hade problem. Vid redovisningarna använde samtliga elever matematiska begrepp. Kanske är eleverna på väg att generalisera sitt matematiska språk genom att använda de matematiska begreppen oftare och oftare, som Säljö/Riesbeck/Wyndhamn skriver i sin bok. De menar att man inte får nöja sig med det vardagliga språket, utan att det är viktigt att få eleverna att använda sig av det matematiska språket och för att inte stanna upp i sitt lärande.¹⁰⁶ Vid en observation där eleverna avslutade med redovisning var det en elev som lyssnade på redovisningen som uppmärksammade det matematiska språket, ”Kunde ni inte skriva multiplikation istället för gånger?”¹⁰⁷ Vid en annan observation påminde läraren några elever att använda ett matematiskt språk.¹⁰⁸ Annars såg jag att de allra flesta använde sig av matematiska begrepp i redovisningarna och även i intervjueerna. En pojke jag intervjuade berättade att han lärt sig plus, minus, multiplikation, addition och subtraktion. Kanske ville han gardera sig så att han fick med alla räknesätten eller kanske kom han på att han skulle använda de begrepp de talat om i klassrummet och lade till addition och subtraktion för att få med alla trots att han svarat plus och minus.¹⁰⁹

Begrepp användes även ibland när eleverna arbetade vid datorn och av gruppen som arbetade vid skrivtavlan. Jag kunde också se att datorerna och skrivtavlan var ett fungerande verktyg som gav utrymme för detta. Det är dock viktigt att man gör eleverna medvetna om begreppen i inledningen av lektionen och även medan den pågår.

Två elever tyckte att de mest ritade i programmet LynX och att det inte var så mycket matte. I observationerna hörde jag vid några tillfällen att de talade om hur de skulle räkna ut vissa saker och att de talade om addition och multiplikation. Jag tror att eleverna inte alltid är medvetna om att de talar matematik. Däremot tyckte samma elever att i Wordwall var det mycket matte.

¹⁰⁶ Säljö/Riesbeck/Wyndhamn (2003) s. 239-240
¹⁰⁷ Observation 3, 130429
¹⁰⁸ Observation 4, 130527
¹⁰⁹ Intervju med elev, 130530
5.4 Sammanfattning

Syftet med min studie var att undersöka om matematik gick att förena med att använda digitala hjälpmedel. Dels ur elevernas perspektiv dels ur lärares perspektiv. De digitala program som användes var Wordwall och LynX. Jag kunde se att även om LynX endast användes som ett ritprogram så ledde det till att eleverna löste en problemlösningsuppgift genom samtal och samspel. Eleverna använde sig av ett matematiskt språk där de använde sig av matematiska begrepp, även om det inte alltid var medvetet. Wordwall var ett program eleverna arbetat med tidigare när de hade matematik, men de hade aldrig arbetat med problemlösning i detta program. Även här samtalade och samspelade eleverna med varandra när de löste uppgiften även om jag kunde se att uppgiften var för enkel för att vara en problemlösningsuppgift. Jag kunde också se att elevernas redovisningar skapade tillfällen till samtal och där matematiska begrepp användes, problemlösningsstrategier och reflektion. Förberedelserna till dessa gav också reflektion, samtal och samspel. För mig som observatör kunde jag se fördelen med redovisningarna på hur det ledde till samtal, samspel, matematiska begrepp, problemlösningsstrategier och reflektion tillsammans med de digitala programmen. Precis som Kjällander i hennes avhandling där eleverna ideligen kommunikerade med varandra och uppmärksammade både sina egna och de andras representationer. Jag tänker också att de digitala program som användes inte behöver innehålla matematikuppgifter för att undervisningen ska handla om matematik. Jag såg att programmet LynX som de flesta elever använde som ett ritprogram under mina observationer genererade matematikundervisning innehållande samtal, samspel om uppgiften och ett matematiskt språk. Forskarna har varit oense och det finns all anledning till att fortsätta studier om digitala hjälpmedel i matematikundervisningen leder till IKT där samtal, samspel och reflektion främjas. Kan det vara så att användandet av digitala hjälpmedel i matematikundervisningen automatiskt leder till kommunikation mellan elever?

110 Kjällander (2011) s. 155
Referenser

Källmaterial

Observation utförd 2013-04-08 – 2013-05-27, transkribering finns hos författaren

Intervju med elever utförd 2013-05-30, transkribering finns hos författaren

Intervju med lärare utförd 2013-06-25, transkribering finns hos författaren

Litteratur

Grundskoletidningen, 4/2012, Årgång 22

Skolverket, *Läroplanen för grundskola, förskoleklassen och fritidshemmet, 2011*

Digitala referenser

Helenius, O., 2013 http://www.lararnasnyheter.se/origo/2013/02/02/ikt-inte-sjalvklart-matten 2013-11-23

Jönsson P, m.fl, 2010, Matematik för den digitala generationen.
http://www.mah.se/Forskning/Sok-pagaende-forskning/Matematik-for-den-digitala-generationen/ 2013-07-15

http://www.ne.se/it/214244

http://www.kairosfuture.com 2013-07-15

http://www.regeringen.se/sb/d/10407/a/112517 2013-11-16
Bilaga 1.

Intervjufrågor till lärare

Intervjufrågor till elever