Examensarbete
10 poäng

Den tidiga multiplikationsinlärningen

Svårigheter som kan bli möjligheter

The Early Training in Multiplication
Turning Difficulties into Opportunities

Anders Ljunggren
Camilla Ramstorp

Lärarexamen mot grundskolans tidigare år
Naturvetenskap/Teknik/Matematik
Vårterminen 2006

Handledare: Lisbeth Ringdahl
Examinator: Agneta Rehn
Sammanfattning

Nyckelord: bilder, introduktion, laborativt, multiplikationsinlärning, mönster, strategier.
Innehållsförteckning

1Inledning .. 7

2Syfte och frågeställningar ... 8

3Litteraturbakgrund .. 9
 3.1 Styrdokumenten för matematikundervisningen ... 9
 3.2 Olika teorier om hur barn lär sig matematik .. 10
 3.3 Lärares nyckelroll .. 12
 3.4 Vad är känt som problem ... 13

4Olika räknemetoder .. 16
 4.1 Uppräkning .. 16
 4.2 Rutnät .. 16
 4.3 Mönster i tabeller ... 16
 4.4 Winnetkakort ... 17
 4.5 Multiplikation med fingrarna .. 17
 4.6 Utantill-inlärning ... 17
 4.7 Ett steg längre .. 18
 4.8 Egenskaper hos de 28 kombinationerna i multiplikationstabellen 18
 4.9 Faktorisering av olika tal ... 18

5Metod ... 19
 5.1 Metod .. 19
 5.2 Urval .. 19
 5.3 Beskrivning av skolan ... 19
 5.3.1 Beskrivning av lärarna .. 20
 5.4 Genomförandet ... 21
 5.5 Datainsamlingsmetoder .. 21

6Resultat ... 23
 6.1 Elevintervjuer .. 23
 6.2 Hur undervisar några pedagoger om multiplikation? ... 25

7Diskussion .. 28
 7.1 Analys av resultat ... 28
 7.1.1 Olika typer av svårigheter som elever i undersökningen upplevde 28
 Uppgifterns utseende ... 28
 7.1.2 Analys av pedagogernas svar utifrån vår fråga. Hur undervisar några pedagoger om
 multiplikation? ... 29
 7.2 Metoddiskussion ... 30
 7.3 Slutdiskussion ... 31
 7.4 Förslag till ny forskning .. 33

8Avslutning .. 34

9Referenser ... 35

Bilaga 1-5
1 Inledning

Vi (en fritidspedagog och en förskollärare) studerar till lärare inom SÄL-projektet i ämnena Ma/No/Teknik för de tidigare skolåren. Vi hade arbetat i ungefär 20 år inom förskole-, fritidshems- och skolverksamheten när vi kände att vi ville ha en formell lärarexamen.

Vi har under de år vi arbetat i skolan upplevt att det finns barn som har svårt att förstå multiplikationen. Det är både de som har läs- och skrivsvårigheter men också de barn som inte har det. En fråga som vi upplever att barn ofta ställer är,
– ska jag ”plussa” eller ska jag ”gånga”.

Dessa elever kan även möta svårigheter när divisionen introduceras eftersom den hör ihop med multiplikationen. Vi tror att om barnen hade fått uppleva fler laborativa lektioner och att inlärningen hade skett under en längre period med mindre fokus på tabellinlärningen hade färre barn upplevt ett matematiskt misslyckande.

Detta är något vi tror på och som vi skulle vilja undersöka om det stämmer. Därför vill vi fördjupa oss i detta ämne och vi hoppas då på att vårt arbete kommer att ge oss verktyg till att förbereda eleverna för den första multiplikationsinlärningen på bästa sätt.
2 Syfte och frågeställningar

Som blivande Ma/No/Tk lärare vill vi kunna ge inre bilder av vad multiplikation är och därmed bättre verktyg för multiplikationsinlärningen. Med inre bilder menar vi man ska kunna förstå sig en bild av multiplikationen, exempelvis 4×4 att kunna se fyra högar med fyra saker i varje hög.

Vi vill undersöka var i den grundläggande inlärningssituationen som problem kan uppstå. Vi vill även undersöka hur pedagogerna varierar sitt arbetssätt vid multiplikationsundervisningen, och om det finns några skillnader i deras undervisning utifrån deras utbildning.

De frågor vi ställer oss är:

- Vad upplever några elever som svårigheter i den tidiga multiplikationsinlärningen?
- Hur undervisar några pedagoger om multiplikation?
3 Litteraturbakgrund

3.1 Styrdokumenten för matematikundervisningen

I Skolverkets kursplan år 2000 för matematik (Skolverket 2000) står det att grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematiken som behövs för att fatta välgrundande beslut i vardagslivets många valsituationer, för att kunna tolka och använda det ökande flödet av information och för att kunna följa och delta i beslutsprocesser i samhället. Skolan ska utveckla elevens intresse för matematik och göra det möjligt för eleven att kommunicera med matematikens språk och uttrycksformer. Eleven ska ges möjligheten att upptäcka estetiska värden i matematiska mönster, former och samband samt att uppleva glädje och tillfredsställelse som ligger i att kunna förstå och lösa problem.

Under rubriken ämnets karaktär och uppbyggnad står det bland annat följande. "För att framgångsrikt kunna utöva matematik krävs en balans mellan kreativa, problemslösande aktiviteter och kunskaper om matematikens begrepp, metoder och uttrycksformer. Detta gäller alla elever, såväl de som är i behov av särskilt stöd som elever i behov av särskilda utmaningar" (Skolverket 2000, s 28).

Mål att sträva mot för eleven vad det gäller matematik (Skolverket 2000, s 26):

- Utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och att använda matematik i olika situationer.
- Inser att matematiken har spelat och spelar en viktig roll i olika kulturer och verksamheter och få kännedom om historiska sammanhang där viktiga begrepp och metoder inom matematiken utvecklats och använts.
- Inser värdet av att använda matematikens uttrycksformer.
- Utveckla sin förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande.
- Utveckla sin förmåga att formulera, gestalta och lösa problem med hjälp av matematik, samt tolka, jämföra och värdera lösningar i förhållande till den ursprungliga problemsituationen.
- Utveckla sin förmåga att använda enkla matematiska modeller samt kritiskt granska modellernas förutsättningar, begränsningar och användning.
- Utveckla sin förmåga att utnyttja miniräknarens och datorns möjligheter.
• Utvecklar sin tal- och rumsuppfattning samt sin förmåga att förstå och använda grundläggande talbegrepp och räkning med reella tal, närmevärden, proportionalitet och procent.

3.2 Olika teorier om hur barn lär sig matematik.

Teorin om det situationsbundna tänkandet förespråkades av Lauren Resnick 1987 (i Ahlberg 1995). Det finns skillnader på elevers tänkande utanför skolan och deras sätt att tänka i en skolsituation. I skolan arbetar eleverna på egen hand. I vardagslivet är det ovanligt att vi löser problem på egen hand och utan att utnyttja särskilda hjälpmedel som behövs för att lösa situationen. Målet för undervisningen i matematik är att eleverna ska lära sig behärska

1. språklig intelligens
2. logisk-matematisk intelligens
3. visuell-rumslig intelligens
4. kroppslig-kinestetisk intelligens
5. musikalisk intelligens
6. social intelligens
7. intrapersonell intelligens
8. naturalistisk intelligens

Forsell (2005 s 225)
Metakognition är en nivå över kognitionen, dvs. tänkande om tänkande. I grunden gäller det att få användning för tankeprocessen i olika situationer. Intelligens och minne är inblandade i denna utveckling.

3.3 Lärarens nyckelroll
I Myndigheten för skolutvecklings skrift Baskunnande i matematik (Myndigheten för skolutveckling 2003) kan man bland annat läsa att läraren alltid har haft en nyckelroll för utformandet av matematikundervisningen i skolan. ”Det är kanske så att traditionen sätter
gränser som gör att nuvarande mål är omöjliga att nå för många elever med den undervisning vi har.” (s 9)

3.4 Vad är känt som problem

Många barn använder sig av upprepad addition vid uträkningar av multiplikationen. Därför är det viktigt att reda ut vissa sammanhang som att 4*7 betyder 7+7+7+7 alltså summan av fyra sjuor och inte en summa av sju fyror 4+4+4+4+4+4+4, även om resultatet i båda fallen är 28. Om man inte har detta klart för sig är risken stor att man utgående från 4*7=28 får 5*7 till 4*7+4=32 istället för 4*7+7=35. Felet är vanligt hos elever med ett annat modersmål än svenska enligt Löwing och Kilborn (2003). Den kommutativa lagen (a*b=b*a se bilaga 1b exempel 2*7 = 7*2) för multiplikation är inte självklar för många elever. Den gäller för tal men den skapar svårigheter vid arbeten med storheter. Den första matematikundervisningen är väsentlig. Den lägger grunden till nästan alla viktiga moment i matematikundervisningen som elevens inställning till ämnet och till sin egen kompetens.

Nybörjarinläsningen bör vara tematiskt inriktad i inlärningsblock anser Malmer (1999).

Detta gynnar de elever som har svårigheter med symboltolkning av olika slag. Svårigheterna kan de inte undgå, men de skulle stå starkare och därmed också har mera kraft att möta dem och kompensera dem, genom att undervisningen innehåller dessa moment.

- göra och pröva
- tänka och tala
- förstå och formulera

6*9 7*8 7*6 8*6 4*8
4*9 7*9 7*7 6*7 4*7
7*5 5*9 8*8 9*7 8*5
9*6 3*9 8*7 4*6 5*6
9*4 5*8 3*8 6*8 7*4

En kombinationstyp som visar sig förorsaka många fel, är nollkombinationer. Detta beror på bristande förståelse för vad nollan representerar.
4 Olika räknemetoder

4.1 Uppräkning

En metod som kan användas som förberedelse av multiplikationstabellen är uppräkning i 2 steg, 3 steg, 4 steg etc. På detta sätt lär sig barnen känna igen de tal som senare kommer att ge de rätta produktarna. Ex. 4*3 betyder 3+3+3+3, en uppräkning från 0 i fyra tre steg dvs. 3,6, 9,12.

4.2 Rutnät

För att bekanta sig med multiplikationstabellerna kan eleverna använda sig av rutnät där de markerar multipler av olika tal. Rutnätet kan innehålla tal från 1-90. Eleverna kan då upptäcka intressanta mönster och egenskaper hos följder av tal (se bilaga 1b).

4.3 Mönster i tabeller

För att eleven ska kunna lära sig alla de olika kombinationerna upp till 10*10, vilket är en fördel vid många beräkningar, gäller det att söka sådana strukturer i tabellerna som underlättar förståelsen av dess uppbyggnad. Utnyttjar vi dessa strukturer brukar det förenkla inlärningen genom att eleven ser mönster i det de gör (se bilaga 1a-b).

Ex.

- utnyttja kommutativa lagen, vilket gör att tabellen blir symmetrisk kring en diagonal som innehåller kvadrattalen. Se bilaga 1a (kvadrattalen är markerade med fetstil). Symmetrin medför att om eleven kan lära sig de 45 kombinationerna på vänstra sidan om diagonalen, så kan eleven även de 45 kombinationerna till höger om diagonalen.

- andra viktiga strukturer ges av enhetselementet 1 och talsystemets bas 10. För alla tal a gäller att a*1=1*a=a, t.ex. 7*1=1*7=7. För multiplikation av naturliga tal med 10 gäller att produkten får en nolla till höger om talet. Således är 7*10=10*7=70.
• för de elever som behärskar dubblorna i additionstabellen, dvs. multiplikation med 2, är det bara följande 28 kombinationer kvar att lära sig. Kan eleven detta och dubblorna i additionstabellen behärskar eleven hela multiplikationstabellen.

3*3
4*3 4*4
5*3 5*4 5*5
6*3 6*4 6*5 6*6
7*3 7*4 7*5 7*6 7*7
8*3 8*4 8*5 8*6 8*7 8*8
9*3 9*4 9*5 9*6 9*7 9*8 9*9

För att färdighetsträna detta kan eleverna använda sig av en lathund se bilaga 4, över multiplikationstabellen. Observera att lathunden inte är något lämpligt hjälpmedel på sikt eftersom det leder till en omväg i räknandet. Lathunden används endast som ett stöd under en inlärningsfas.

4.4 Winnetkakort
Att använda sig av Winnetkakort är en metod. Med denna metod kan eleven träna med sin kompis. Vid denna färdighetsträning blir båda eleverna stimulerade (se bilaga 1b).

4.5 Multiplikation med fingrarna
Att lära eleverna olika tekniker kan göra inläreningen av multiplikationstabellerna mer intressant.

4.6 Utantill-inlärning
Utantill-inlärning är en månghundraårig metod som bygger på att man övar ett fåtal nya uppgifter i taget tills dessa behärskas, varefter man går vidare till nya uppgifter. Denna metod kan uppfattas tråkig om man inte varierar den.
4.7 Ett steg längre

Ska eleverna bli säkra i huvudräkning bör man inte stanna vid själva tabellen utan gå ett steg till och öva den generaliserade multiplikationstabellen som är uppgifter av följande slag.

\[
egin{align*}
7*4+1 &= 4*4+3 &= 4*8+6 = \\
9*6+7 &= 3*9+5 &= 3*3+5 =
\end{align*}
\]

4.8 Egenskaper hos de 28 kombinationerna i multiplikationstabellen.

- Om minst ett av talen är ett jämnt tal, så är produkten ett jämnt tal. Om båda talen är udda så är produkten ett udda tal.
- Om en av faktorerna är delbar med 3 (alltså är 3, 6, 9) så är siffrornas summa delbar med 3.
- Ett jämnt tal som multipliceras med 5 ger en produkt som slutar på 0 och ett udda tal som multipliceras med 5 ger en produkt som slutar på 5.
- Om ett tal multipliceras med 9 så blir siffrorsumman 9

4.9 Faktorisering av olika tal.

5 Metod

5.1 Metod

För att besvara vår första fråga (Vad upplever några elever som svårigheter i den tidiga multiplikationsinlärningen?) har vi valt att låta elever besvara multiplikationsuppgifter (bilaga 2a-b), och utifrån deras svar har vi intervjuat eleverna om deras lösningar och tankegångar (bilaga 3).

För att besvara vår andra fråga (Hur undervisar några pedagoger om multiplikation?) har vi intervjuat pedagoger (bilaga 4).

5.2 Urval

Eleverna som vi har intervjuat går samtliga i skolår 4 i samma klass och har före intervjuutkastet genomfört och svarat på multiplikationsuppgifter (bilaga 2a-b). De elever som vi valde att intervjuar var de som enligt klassläraren inte har läs- och skrivsvårigheter. Vi valde slumpmässigt ut åtta barn och till dessa skickade vi en skriftlig förfrågan (bilaga 5) till föräldrarna om tillåtelse att intervjuer deras barn. Av dessa fick vi tillbaka sju svar, varav sex accepterade att barnen fick vara med. En ville inte att barnet deltog och en svarade inte.

5.3 Beskrivning av skolan

5.3.1 Beskrivning av lärarna

Lärare 1, är Ma/No-lärare för skolår 1-7. Via pedagogiska centralen har lärare 1 genomfört några småkurser inom matematik. Under de åtta år som lärare 1 varit verksam har lärare 1 undervisat på två skolor i olika kommuner i skolår 1-4, undervisar idag i skolår 3. Skillnaden på de olika skolorna har varit stora.
– På första skolan fanns det många invandrare, klimatet var mycket tuffare och det fanns betydligt fler sociala problem. Men det var fler pedagoger som var engagerade i sitt jobb än på min nuvarande skola.

– Det finns både likheter och skillnader, men oavsett var man är så är det viktigt att barnen har en bred bas att stå på för att kunna utvecklas. Det är inte lönt att gå vidare/hasta iväg innan grunden är på plats”.

Lärare 3, är Sv/So-lärare för skolår 1-7. I matematik är läraren behörig att undervisa i skolår 1-3 men undervisar idag i skolår 5. Läraren har arbetat i 13 år varav sex år i skolår 1-3 och sedan dess i skolår 4-6 i samma kommun men på olika skolor. Vad som skiljer skolorna åt enligt läraren är invandrartäthet, social status, föräldrakontakt och familjernas sammansättning.
– Förhållanden runt omkring påverkar hur eleverna är i skolan. Men lusten att lära och förmågan att lära är samma.

Lärare 4, är Sv/So-lärare för skolår 1-7. I matematik är läraren behörig att undervisa i skolår 1-3 men undervisar idag i skolår 4. Har varit verksam som lärare i tio år på samma rektorsområde, varav fyra år i skolår 4-6 och sex år i skolår 1-3.
– Skillnaden jag lagt märke till mellan år 1-3 och 4-6 är att i de yngre åldrarna samarbetar man mer mellan de olika yrkeskategorierna.

Lärare 5, är utbildad lågstadielärare och har vidareutbildat sig till specialpedagog. Har arbetat i 36 år varav 30 år på samma skola, de sex senaste verksamma åren som specialpedagog på en annan skola inom samma kommun. Läraren har arbetat flest år i skolår 1-3 men även följt
vissa klasser upp i skolår 4-5. Arbetar just nu som specialpedagog i skolår 1-6 men har även
varit verksam på högstadiet.

– De elever som jag jobbade med på högstadiet hade en ganska låg kunskapsnivå, så det var
bra att ha den bakgrund som jag har även om det gällde högstadieelever.

– Eleverna har mycket högre resultat på denna skola jämfört med den förra jag arbetade på.

 Den förra var en mångkulturell förortsskola, med all den problematik som kan uppstå där
sociala problem m.m.. Problem finns det här också men inte alls i samma utsträckning.

 De barn som får hjälp här fick inte hjälp där eftersom det var så många som låg lågt. Det
blir lite orättvist fördelat, jag känner att fler barn får hjälp här. Jag känner att jag räcker
till mer här.

5.4 Genomförandet

Elevundersökningen genomfördes på följande vis. Samtliga elever i en 4:e klass svarade på
enkätuppgifterna som finns i bilaga 2a-b. Undersökningen ägde rum i deras klassrum
tillsammans med oss. Elevintervjuerna gjordes enskilt i deras grupprum, spelades in på band
och tog cirka 20 minuter per elev att genomföra.

Lärarintervjuerna (bilaga 4) genomfördes på följande vis. Lärarna tillfrågades utifrån deras
utbildning och vilken åldersgrupp de idag arbetar med. Samtliga tillfrågade accepterade att
medverka i vår undersökning. Intervjuerna genomfördes enskilt i ett klassrum på skolan.
Intervjuerna tog 30 – 40 minuter per pedagog att genomföra, samtliga intervjuer spelades in på
band.

En av oss intervjuade barnen och den andre intervjuade pedagogerna. Detta har gjort att
frågorna har ställts på samma vis till samtliga barn/vuxna.

5.5 Datainsamlingsmetoder

Som metod för vår undersökning har vi valt att använda intervjuer. Elevintervjuerna (bilaga 3)
kommer att bygga på multiplikationsuppgifter (bilaga 2a-b) som de gjort före intervjuutfall.
Multiplikationsuppgifterna har vi konstruerat för att de ska likna de uppgifter som de är vana
vid utifrån sin matematikbok, Matematikboken 4 (Undvall, m.fl. 2005) Bilduppgifterna blev
vi inspirerade av från boken Lär dig multiplicera Clemson(1996). Vi ville undersöka om
eleverna upplever någon skillnad på de olika uppgifterna. Elevintervjuerna kommer att vara
strukturerade (fasta frågor som ställs till alla deltagare) och kommer därför inte att redovisas

Vi har valt att registrera intervjuavsnitt med hjälp av ljudinspelning (Patel och Davidsson 2003), detta för att slippa föra anteckningar under intervjuerna.
6 Resultat

Elevsvaren kommer vi att redovisa som en sammanfattning efter varje fråga. Svaren från de pedagoger vi intervjuat redovisas utifrån vår fråga. Hur undervisar några pedagoger om multiplikation?

6.1 Elevintervjuer

1. Är det några av dessa uppgifters utseende som du känner igen från skolans matematikböcker eller matematiklektioner?

2. Vilka av dessa uppgifter tycker du bäst om att lösa?

På denna fråga svarade tre elever att uppgifterna med hjälp av bilderna kändes bäst. Två barn tyckte att sifferuppgifterna kändes bäst eftersom då slapp de bokstäverna. För ett barn spelade det ingen roll för han tyckte allt kändes lika bra.

3. Vilka uppgifter kändes lättast att lösa?

På denna fråga svarade fem barn att uppgifterna med bilderna var lättast att lösa. Ett barn tyckte att problemlösningen var lättast.
4. **Vilka uppgifter var svårast att lösa?**

Här tyckte fyra av eleverna att problemlösningens fråga fem var svårast. Ett barn tyckte det var för lång text till frågan. En annan elev tyckte svårigheten låg i att det fanns två problem i samma fråga. Två av eleverna tyckte att de höga talen med siffror var svåra att lösa.

5. **Berätta hur du tänkte när du löste de olika multiplikationsuppgifterna?**

Så här berättade eleverna om sina olika strategier för att komma fram till lösningar på de olika uppgifterna (bilaga 2a-b).

Taluppgifterna:

- 3*9 löstes genom att ta 9+9+9=18+9.
- 9*4=9*2=18 och sen dubbelt.
- 9*6 löstes som 9*5+9=45+9.
- 6*9=3*9=27*2
- 2*4=4+4
- 6*7 löste jag 14+14+14
- 8*3=16+8
- 3*9=9+9+9
- 8*6=6*4=24 6*5=30 6*6=36+6+6
- 3*9=3*10-3
- 8*3=8*2=16+8

- 5*7 är lätt för då gör jag femskutt och det gör jag utan att ta fingrarna hjälp.
- 3*9 då fäller jag ner finger tre på vänster handen och ser då att jag har två fingrar till höger om det nedfällda fingret vilket betyder tjugo. Sen har jag sju fingrar kvar till vänster om det nedfällda fingret och tillsammans blir det 27.
Problemuppgifterna:

- När jag löser läsproblem letar jag efter siffrorna i texten och sen löser jag uppgiften.
 Uppgift 3 som handlade om legogubbarna löstes 7*7-7. Flera av eleverna säger att 7*7 är ett tal som de anser har varit lätt att lära.
- Hur mycket apelsinerna kostade räknade jag ut genom att ta 1*9=9, 2*9=18, 3*9=27, 4*9=36.
 5*7=2*14+7
 3*9=2*9+9=18+2+7=27

Bilduppgifter:

- Uppgifterna med bilderna löser jag genom att titta på bilderna och ta hälften + hälften. T ex skorna 4+4 eller tassarna 8+8.
- Uppgiften med skalbaggarnas ben räknar jag 12+12+12+12+12.
- Schackbrädan har 8 rutor till vänster och 8 rutor rakt ner. Då blir det 8*8=64.
- Bilderna på skorna tänkte jag att ett par är två och det är fyra högar 2*4=8
- Schackbrädan började jag att räkna varje ruta för sig men jag tappade bort mig. Då tog jag en penna och ritade upp linjer vid varje rad och räknade varje rad för sig och skrev summan vid varje rads slut ifall jag skulle tappa bort mig.
 Jag brukar tänka så djupt så att när jag tänker, då liksom tänker jag på flera saker samtidigt så jag kan tappa bort allt. Allt kan bara blanda ihop sig så att det bara blir helt konstigt och då måste jag göra om allt igen och då blir det jobbigt. Jag har bra dagar och dåliga dagar.
 Jag räknar tio tal på dåliga dagar och tjugo tal på bra dagar.

6.2 Hur undervisar några pedagoger om multiplikation?

- Introduktion
 Det är ingen som börjar före skolår 2 men alla pedagogerna tycker att man skulle kunna göra det. Detta eftersom de introducerar multiplikationen som upprepad addition. Eleverna måste ha förståelse för addition innan man startar med multiplikation. Alla pedagogerna börjar med att tala om dubblor (2+2, 3+3 och så vidare), för att sedan gå vidare med tripplar (2+2+2, 3+3+3 och så vidare). ”Det kan man börja med väldigt tidigt, förskolebarn kan ju dubbla.” Man låter också eleverna arbeta laborativt med olika åskådningsmaterial. En av Ma/No-
lärarna har mer vardagsanknytning i sin undervisning, istället för att träna tabellerna med böner lär man sig lika bra genom att räkna muffins på en bakplåt. Alla är överens om att eleverna lär genom att göra ”lär med kroppen det fastnar i knoppen” Parlenvi och Sohlman (1984).

När de förklarar vad som sker använder de sig oftast av ordet gånger, en av pedagogerna säger stycken, exempel hämta två stycken pennor tre gånger. Att använda orden multiplikation och multiplicera är naturligt för fyra av pedagogerna. Den femte pedagogen upplever att en del av eleverna blir rädda för dessa ord och undviker därfor orden.

- **Var tycker pedagogerna att eleverna stöter på problem?**

- **Påverkar pedagogens grundutbildning deras sätt att undervisa?**

Oavsett grundutbildning anser pedagogerna att man kan introducera multiplikation tidigt, Ma/No-lärarna anser att desto tidigare desto bättre, medan Sv/So-lärarna menar att man bör vänta till additions- och subtraktionsförståelsen är befäst. Alla pedagogerna använder sig av och lägger stor vikt vid att arbeta laborativt i sin undervisning. Introduktionen sker ungefär på samma sätt oavsett grundutbildning. Terminologin är mer betydelsefull för Ma/No-lärarna. Den pedagog som har varit yrkesverksam flest år (36) säger att det är fler elever som har problem med multiplikation nu för tiden. Pedagogen anser att detta beror på att barn har idag svårare att koncentrera sig. Detta på grund av alla intryck som de får från olika håll. Fyra av fem pedagoger anser att det som är svårast att förklara för eleverna är innebörden av den kommutativa lagen. Den femte pedagogen (Ma/No) tycker att det är svårt att i den tidiga multiplikationsinlärningen få eleverna att förstå vad multiplikationstecknet står för. Fyra
gånger fyra kan lika gärna bli åtta som sexton. Oavsett vilken grundutbildning pedagogerna har säger de att de anpassar sin undervisning utifrån var eleverna befinner sig i sin matematiska utveckling.
7 Diskussion

7.1 Analys av resultat

Vi inleder med att analysera resultaten utifrån vad de elever och pedagoger som vi intervjuat beskriver som svårigheter i den tidiga multiplikationsinlärningen.

7.1.1 Olika typer av svårigheter som elever i undersökningen upplevde.

- Uppgiftens utseende

Eleverna känner inte igen uppgiftens karaktär och hur den presenteras. Det kan bero på textmassan, språket kan vara svårtolkat eller för lång text. Även om dessa elever inte har läs- och skrivsvårigheter upplever de att textmassan är svår att tolka. De säger att de letar efter siffrorna för att lättast komma fram till en räkneoperation. Är det så att när vi ger barnen uppgifter ligger fokus på att tolka texten istället för att lösa den matematiska uppgiften?

Exempel: Kalle går med sin mormor och morfar till torget varje fredag klocka 10.00 för att handla frukt och grönsaker. Idag kostar äpplen 3 kronor styck, bananerna 2 kronor styck och clementinerna 4 kronor styck. De köper 9 äpplen men inga bananer och clementiner. Vad kostar frukten de köpt?

Hade de då inte varit bättre att frågan varit ställd på följande vis. Kalle köper 9 äpplen för 3 kronor styck, vad kostar det tillsammans?

Vi tror att fler elever hade lyckats med uppgifter av denna typ utan en massa vilseledande information. Målet i den tidiga multiplikationsinlärningen måste vara att eleverna ska lyckas utföra rätt räkneoperation. Att få lyckas stärker elevernas självförtroende och gör att de vågar anta nya utmaningar.

- Stora tal

Dessa tal var svåra för några av eleverna. Detta kan bero på att de omvandlar multiplikationsuppgiften till addition. Vilket inte är fel men blir en arbetsam metod när de kommer till stora tal (från 6*6 till 9*9). Arbetsminnet och fingrarna räcker inte till och det tar lång tid att lösa uppgiften. För att klara av den stora multiplikationskvadraten (se bilaga 1b) bör eleverna öva, rabbla tills det sitter i minnet.
Strategier

För att lyckas med multiplikationen måste eleverna känna sig trygga och säkra i sina strategier. Uppgifterna måste vara på rätt nivå men ändå vara en utmaning för eleverna. Exempel på en bra strategi är $5 \times 7 = 2 \times 14 + 7 = 28 + 7 = 35$. Elever som använder sig av denna strategi i multiplikation är väl förtrogna med dubblor och kan använda sig av detta för att lösa uppgiften.

7.1.2 Analys av pedagogernas svar utifrån vår fråga. Hur undervisar några pedagoger om multiplikation?

7.2 Metoddiskussion

Vi anser att vi genom våra elva intervjuer, sex barnintervjuer och fem pedagogintervjuer, fått svar på de frågor vi ställde. Vad upplever några elever som svårigheter i den tidiga multiplikationsinlärningen? Hur undervisar några pedagoger om multiplikation?

Ytterligare en fördel med intervjuer är att man får ett djup i undersökningen. Det är lättare att ställa följdfrågor och tack vare bandinspelningen kunde vi fokusera på intervjun i stället för att samtidigt anteckna. Dock är bearbetningen av svaren tidskrävande men vi anser att denna metod var rätt val för vår undersökning.

7.3 Slutfdiskussion

Att känna till och förstå grundläggande matematiska begrepp utgör en rättighet för grundskolans elever. Alla ”normalbegåvade” barn borde kunna tillgodogöra sig grundskolans matematik på ett tillfredsställande sätt vilket ännu inte är fallet. Många olika faktorer och det komplexa samspelet som finns mellan dessa påverkar deras resultat (Sahlin 1995).

Vi anser att vår undersökning kommer att hjälpa oss när vi ska introducera multiplikation för våra kommande elever. Att introducera laborativt med hjälp av åskådningsmaterial som pedagogerna sagt i intervjuerna är bra, men genom att använda sig av bilder anser vi att man kan förstärka intrycken av vad som sker i multiplikation. Problemet som vi ser det är att i dagens läromedel finns det väldigt lite bilder som visar multiplikation. Därför kommer det att krävas att vi själva tillverkar material som eleverna kan använda sig av. Att även tänka på vardagsmatematiken anser vi är viktigt. Lauren Resnick 1987 (i Ahlberg 1995) anser att det finns skillnader hur elever tänker i skolan och i vardagslivet. Därför räcker det med att plocka

7.4 Förslag till ny forskning

- Vi anser att det vore intressant att forska om hur föräldrarnas hjälp vid matematikinlärning påverkar elevernas studieresultat.
- En djupstudie om man med hjälp av bilder kan få eleverna att lättare förstå den tidiga multiplikationsinlärningen.
- Får barnen som börjar med multiplikation i skolår 1 en bättre förståelse än de som startar senare?
8 Avslutning

Vi vill tacka eleverna och deras föräldrar som gav oss möjlighet att intervjua deras barn. Vi vill även tacka våra kollegor för att vi fick intervjua dem, samt för alla de pedagogiska diskussioner som förts spontant under arbetets gång. Vår handledare Lisbeth Ringdahl har under arbetets gång lotsat oss framåt och gett oss nya infallsvinklar i vårt arbete, tack för alla goda råd.
9 Referenser

Clemson Wendy och David (1996) *Lär dig multiplicera!*, Malmö: Richters förlag AB

Forsell Anna (red) (2005) *Boken om pedagogerna*, Stockholm: Liber

Magne, Olof (1973) *Matematiksvårigheter*, Trelleborg:Tryckeri AB Allehanda

Artiklar

Bilaga 1a

De grundläggande additionerna:

1+1 1+2 1+3 1+4 1+5 1+6 1+7 1+8 1+9 1+10 1+11 1+12 1+13 1+14 1+15 1+16 1+17 1+18 1+19
2+1 2+2 2+3 2+4 2+5 2+6 2+7 2+8 2+9 2+10 2+11 2+12 2+13 2+14 2+15 2+16 2+17 2+18
3+1 3+2 3+3 3+4 3+5 3+6 3+7 3+8 3+9 3+10 3+11 3+12 3+13 3+14 3+15 3+16 3+17
4+1 4+2 4+3 4+4 4+5 4+6 4+7 4+8 4+9 4+10 4+11 4+12 4+13 4+14 4+15 4+16
5+1 5+2 5+3 5+4 5+5 5+6 5+7 5+8 5+9 5+10 5+11 5+12 5+13 5+14 5+15
6+1 6+2 6+3 6+4 6+5 6+6 6+7 6+8 6+9 6+10 6+11 6+12 6+13 6+14
7+1 7+2 7+3 7+4 7+5 7+6 7+7 7+8 7+9 7+10 7+11 7+12 7+13
8+1 8+2 8+3 8+4 8+5 8+6 8+7 8+8 8+9 8+10 8+11 8+12
9+1 9+2 9+3 9+4 9+5 9+6 9+7 9+8 9+9 9+10 9+11
10+1 10+2 10+3 10+4 10+5 10+6 10+7 10+8 10+9 10+10
11+1 11+2 11+3 11+4 11+5 11+6 11+7 11+8 11+9
12+1 12+2 12+3 12+4 12+5 12+6 12+7 12+8
13+1 13+2 13+3 13+4 13+5 13+6 13+7
14+1 14+2 14+3 14+4 14+5 14+6
15+1 15+2 15+3 15+4 15+5
16+1 16+2 16+3 16+4
17+1 17+2 17+3
18+1 18+2
19+1

De grundläggande subtraktionerna:

18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 18-9 18-10 18-11 18-12 18-13 18-14 18-15 18-16 18-17
17-1 17-2 17-3 17-4 17-5 17-6 17-7 17-8 17-9 17-10 17-11 17-12 17-13 17-14 17-15 17-16
16-1 16-2 16-3 16-4 16-5 16-6 16-7 16-8 16-9 16-10 16-11 16-12 16-13 16-14 16-15
14-1 14-2 14-3 14-4 14-5 14-6 14-7 14-8 14-9 14-10 14-11 14-12 14-13
12-1 12-2 12-3 12-4 12-5 12-6 12-7 12-8 12-9 12-10 12-11
11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 11-10
10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9
9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8
8-1 8-2 8-3 8-4 8-5 8-6 8-7
7-1 7-2 7-3 7-4 7-5 7-6
6-1 6-2 6-3 6-4 6-5
5-1 5-2 5-3 5-4
4-1 4-2 4-3
3-1 3-2
2-1

Grundläggande multiplikationerna:

1*1 1*2 1*3 1*4 1*5 1*6 1*7 1*8 1*9 1*10
2*1 2*2 2*3 2*4 2*5 2*6 2*7 2*8 2*9 2*10
3*1 3*2 3*3 3*4 3*5 3*6 3*7 3*8 3*9 3*10
4*1 4*2 4*3 4*4 4*5 4*6 4*7 4*8 4*9 4*10
5*1 5*2 5*3 5*4 5*5 5*6 5*7 5*8 5*9 5*10
6*1 6*2 6*3 6*4 6*5 6*6 6*7 6*8 6*9 6*10
7*1 7*2 7*3 7*4 7*5 7*6 7*7 7*8 7*9 7*10
8*1 8*2 8*3 8*4 8*5 8*6 8*7 8*8 8*9 8*10
9*1 9*2 9*3 9*4 9*5 9*6 9*7 9*8 9*9 9*10
10*1 10*2 10*3 10*4 10*5 10*6 10*7 10*8 10*9 10*10
Bilaga 1b

Kommutativa lagen: \(a \times b = b \times a\)
Ex. \(2 \times 7 = 7 \times 2\)
Vid storheter betyder det inte att två karameller kostar sju kronor är lika mycket som sju karameller för två kronor. För då är det inte samma sorts karameller vi köper.

Winnetkakort

På framsidan av koret står det ex. \(6 \times 2\) och på baksidan står svaret 12.

Lathund

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>49</td>
<td>56</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>54</td>
<td>63</td>
<td>72</td>
<td>81</td>
</tr>
</tbody>
</table>

De fetmarkerade talen ingår i den ”stora multiplikationskvadraten”.

38
Bilaga 2a

Multiplikationsuppgifter

3 \cdot 9 = \quad 5 \cdot 7 = \quad 4 \cdot 7 =

6 \cdot 9 = \quad 3 \cdot 4 = \quad 8 \cdot 3 =

5 \cdot 9 = \quad 2 \cdot 4 = \quad 6 \cdot 7 =

(Skriv på mattespråk med svar, under uppgiften)

1, En apelsin kostar 4 kronor. Vad kostar 9 apelsiner?

2, Karl bjuder fyra kompisar på glass. Varje glass kostar sju kronor, han köper en glass till sig själv också, hur mycket kostar glassarna?

3, Anton ställer sina legogubbar i sju rader med sex i varje rad. Hur många legogubbar har han?

4, Ett hårspänne kostar 6 kronor, hur mycket kostar en påse med 5 hårspännen?

5, Camillas cykelväg till skolan är 2km. Hur många km cyklar hon till och från skolan på en skolvecka?
Bilaga 2b
Skriv på mattespråk
Exempel:

\[4 \cdot 5 = 20 \]

Hur många skor?

Hur många tassar?

Hur många saker?

Hur många ben?

Hur många rutor?
Bilaga 3

Elevintervjuer

Är det några av dessa uppgifter utseende som du känner igen från skolans matematikböcker eller matematiklektioner?

Vilka av dessa uppgifter tycker du bäst om att lösa?

Vilka uppgifter känns lättast att lösa?

Vilka uppgifter var svårast att lösa?

Berätta hur du tänkte när du löste de olika multiplikationsuppgifterna?
Bilaga 4

Frågeområden till lärarna inför intervjun.

- Vilken inriktning har du i din grundutbildning?
- Har du någon vidareutbildning i matematik?
- Hur många år har du i yrket?
- Vilka åldersgrupper har du jobbat med?
- Har du arbetat på olika skolor/områden/kommuner?
- Vilka skillnader/likheter har du lagt märke till på dina olika arbetsplatser?

- När tycker du det är lämpligt att introducera/börja med multiplikation?
 - Varför?
 - Kan man börja tidigare/senare?

- När brukar du börja?
- Berätta hur du brukar börja med den tidiga multiplikationsinlärningen.
- Hur introducerar du den?
(följdfrågor)
 Laborativt?
 Tabeller?
 Klossar o liknande?

- Vilka ord använder du när du förklarar vad multiplikation är, och vad det är som händer?
- Kan du ge exempel på ord som du använder.
- Tycker du att det är viktigt att använda korrekt terminologi, t ex multiplicera eller ”gånga”
- Finns det ord som du tycker det är bättre att använda sig av?

- I vilka moment upplever du att eleverna som inte har läs och skrivsvårigheter upplever du stöter på problem?
- Hur stor del av eleverna rör det sig om?
- Vad upplever du som svårast att förklara för eleverna i den tidiga multiplikationsinlärningen?
- Förklarar du på olika sätt för olika barn om ja/nej, varför?
Hej!

Malmö 2006-02-05

Nu är vi snart färdiga matte/no lärare. Vi har vårt examensarbete kvar som handlar om varför många barn har svårt att förstå den första multiplikationsinlärmningen.

Därför är vi intresserade av vad just ditt barn upplever/upplevde i sin första inlärning av multiplikationen. Vi skulle därför vilja be om ditt/ert tillstånd att intervjua ditt/ert barn om detta. Vi kommer att använda oss av bandspelare men detta endast för eget syfte. Vi kommer givetvis inte lämna ut barnets identitet i vår dokumentation.

Vi vill ha in lappen senast 17/2.

Har ni några frågor så går det bra att mejla oss
anders.liunggren@pub.malmo.se
camilla.ramstorp@pub.malmo.se

Med vänliga hälsningar
Camilla Ramstorp och Anders Ljunggren

__

Barnets namn:___

☐ jag tillåter att mitt barn blir intervjuat

☐ Jag tillåter inte att mitt barn blir intervjuat

Målsmans underskrift

__