Article type: Review

Adenomatoid odontogenic tumor: an updated analysis of the cases reported in the literature

Running title: Adenomatoid odontogenic tumor: a review

Bruno Ramos Chrcanovic 1∗
Ricardo Santiago Gomez 2

1 Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden. bruno.chrcanovic@mau.se; brunochrcanovic@hotmail.com

2 Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. rsgomez@ufmg.br

DEPARTMENT OF PROSTHODONTICS, FACULTY OF ODONTOLOGY, MALMÖ UNIVERSITY, MALMÖ, SWEDEN; DEPARTMENT OF ORAL SURGERY AND PATHOLOGY, SCHOOL OF DENTISTRY, UNIVERSIDADE FEDERAL DE MINAS GERAIS, BELO HORIZONTE, BRAZIL

* Corresponding author:
Bruno Ramos Chrcanovic. Department of Prosthodontics, Faculty of Odontology, Malmö University, Carl Gustafs väg 34, SE-214 21, Malmö, Sweden. bruno.chrcanovic@mau.se; brunochrcanovic@hotmail.com Mobile: +46 725 541 545 Fax: +46 40 6658503

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jop.12783
This article is protected by copyright. All rights reserved.
KEYWORDS

Adenomatoid odontogenic tumor; odontogenic tumors; variants; clinical features; recurrence

ABSTRACT

Purpose. To review the clinical and radiographic features of the available data published on adenomatoid odontogenic tumor (AOT) with special emphasis on the comparison of its variants.

Methods. An electronic search was undertaken in July/2018. Eligibility criteria included publications having enough clinical/radiological/histological information to confirm the diagnosis.

Results. 436 publications reporting 1558 cases were included, of which 739 follicular, 247 extrafollicular, and 30 peripheral AOTs. Impacted canine is associated with follicular AOTs in almost 70% of the cases. AOTs were more prevalent in females, in the second decade of life, in maxillae, in anterior region of the jaws, and most are asymptomatic, with a considerable number of lesions presenting cortical bone perforation. Most of the lesions were treated by enucleation. Some cases of recurrence were reported in the literature, but only one was well documented. No difference was found when comparing the clinical/radiological features of the follicular, extrafollicular and peripheral variants.

Conclusions. AOT variants do not show distinctive clinical radiological features. Recurrence of AOT is very rare, which justify its conservative management.

KEYWORDS

Adenomatoid odontogenic tumor; odontogenic tumors; variants; clinical features; recurrence
INTRODUCTION

Adenomatoid odontogenic tumor (AOT) is a benign epithelial tumor that shows duct-like structures. AOTs tend to be encapsulated but produce a variety of architectural patterns, most notably multiple, variably sized nodules of nondescript to spindled epithelial cells with minimal stroma.¹ There is controversy on the literature about its nature, hamartomatous or neoplastic.²,³ Cases of recurrence have been a great matter of debate between authors. The aim of the present study was to integrate the available data published in the literature on AOT into an updated comprehensive comparative analysis of their clinical and radiologic features, as well as to try to identify possible cases of recurrence. Moreover, we also compared the clinic-radiographic features of the follicular, extrafollicular and peripheral variants.

MATERIALS AND METHODS

This study followed the PRISMA Statement guidelines.⁴

Search strategies

An electronic search without time restrictions was undertaken in July 2018 in the following databases: PubMed/Medline, Web of Science, ScienceDirect, J-Stage and LILACS. The following terms were used in the search strategies:

(adenomatoid odontogenic tumor) OR (adenomatoid odontogenic tumour) OR (adenoameloblastoma) OR (ameloblastic adenomatoid tumor) OR (ameloblastic adenomatoid tumour) OR (adenomatoid ameloblastoma)

Google Scholar was also checked. A manual search of all related oral pathology, maxillofacial and specialist dental and oral journals was performed. The reference list of identified studies and the relevant reviews on the subject were also checked for possible additional studies. Publications with
lesions identified by other authors as being AOT, even not having the aforementioned terms in the title of the article, were also re-evaluated by an author (R.S.G.) of the present study.

Inclusion and Exclusion Criteria

Eligibility criteria included publications reporting cases of AOTs, with enough clinical, radiological and histological information to confirm the diagnosis. The definitions and criteria of the World Health Classification of Tumors – Head and Neck Tumors book, were used to diagnose a lesion as AOT. The studies could be of any nature (case series, case reports, immunohistochemical studies, histomorphometric studies, radiological studies, etc), provided that the publication had reported any cases with enough clinical, radiological and histological information. Except for calcifying epithelial odontogenic tumor-like areas, which are within the spectrum of AOT, hybrid odontogenic tumors containing AOT were excluded.

Study selection

The titles and abstracts of all reports identified through the electronic searches were read independently by the authors. For studies appearing to meet the inclusion criteria, or for which there were insufficient data in the title and abstract to make a clear decision, the full report was obtained. Disagreements were resolved by discussion between the authors. The clinical and radiological aspects, as well as the histological description of the lesions reported by the publications were thoroughly assessed by one of the authors of the present study (R.S.G.), an expert in oral pathology, in order to confirm the diagnosis of AOT.

Data extraction

The review authors independently extracted data using specially designed data extraction forms. Any disagreements were resolved by discussion. For each of the identified studies included, the following data were then extracted on a standard form, when available: year of publication,
number of patients, patient’s sex, age and race, duration of the lesion previously to treatment, lesion location, lesion size, perforation of cortical bone, locularity radiological appearance (unilocular/multilocular), tooth displacement and/or tooth root resorption due to lesion’s growth, expansion of osseous region adjacent to the tumor, presence of clinical symptoms, treatment performed (curettage/excision, enucleation, partial resection, resection with continuity), follow-up period, recurrence, and time to recurrence. The lesion size was determined according to the largest diameter reported in the publications. Contact with authors for possible missing data was performed.

The three clinical and radiographical AOT variants were, according to their intraosseous or extraosseous locations (the intraosseous type varies according to the association or not with the crown of an unerupted tooth), classified as (a) follicular, (b) extrafollicular and (c) peripheral (or extraosseous) AOT types.

Analyses

The mean, standard deviation (SD), and percentage were calculated for several variables. The tests performed were the following: Kolmogorov–Smirnov (to evaluate normal distribution), Levene’s test (to evaluate homoscedasticity), Student’s t-test or Mann-Whitney (for two independent groups, continuous variables), Pearson’s chi-squared or Fisher’s exact test (for categorical variables). The degree of statistical significance was considered $p < 0.05$. All data were statistically analyzed using the SPSS version 25 software (SPSS Inc., Chicago, IL, USA).

RESULTS

Literature search

The study selection process is summarized in Figure S1 (see Supplemental Appendix). The search strategy in the databases resulted in 2134 papers, 59 additional eligible papers were found in Google Scholar, and 11 papers through hand-searching. At the end, a total of 436 publications were included (see Supplemental Appendix).
Description of the Studies and Analyses

A total of 1558 AOTs were identified, of which 739 were follicular, 247 extrafollicular, and 30 peripheral lesions – information was not available for 542 AOTs. Of the 739 follicular AOTs, 507 cases presented 1 tooth associated with the lesion, 46 cases with 2 teeth (of which in 39 cases one canine was involved), 7 cases with 3 teeth (in all cases one canine was involved), 1 case with 4 teeth (one canine involved), and 2 cases with 6 teeth (both with 2 canines involved). This information was not possible to retrieve for 175 follicular AOTs. When only one tooth was involved by the lesion, the tooth was a canine in 335 out of 493 cases (67.9%) with information available - 222 maxillary canines and 113 mandibular canines.

Table 1 presents demographic and clinical features of all cases. AOTs were more prevalent in women than in men, at a nearly 1.9:1 proportion. The mean age of the patients was 19.0±9.0 years (range 1-82). The lesions were noticed by the patient a mean±SD of 13.9±27.5 months (range 0-444) before looking for treatment. Figure 1 shows the distribution of the lesions according to age, separated by the variants. The highest prevalence occurred in the second decade of life. The lesions were more prevalent in the maxilla in comparison to the mandible, and at the anterior region in comparison to the posterior region (Figures 2 to 4). The peripheral variant had a strong prevalence in the anterior maxilla. A considerable percentage of central lesions show signs of cortical bone perforation and only a small amount of AOTs had either multilocular radiological appearance or ill-defined borders. Nearly 17% of the lesions presented root resorption of adjacent teeth. No difference was found comparing the clinical and radiological features of the follicular, extrafollicular and peripheral variants. Most of the lesions were treated by enucleation. Time of follow-up was informed for 352 lesions, with a mean±SD of 30.0±36.3 months (min-max, 1-300). An amount of 11.6% of the lesions was followed up for at least 5 years. Some cases of recurrence were reported in the literature, but only one case was identified as possibly presenting strong evidence of an actual recurrence. The lesion recurred twice, 12 years after surgery of the primary lesion, and then again 88 months after the second surgery.
DISCUSSION

The aim of the present study was to integrate the available data published in the literature on AOT. A review of pathological lesions is important as it provides information that can improve diagnostic accuracy, allowing pathologists and surgeons to make informed decisions and refine treatment plans to optimize clinical outcomes.6-10 The present review observed that AOTs were more prevalent in females, in the second decade of life, in maxillae, in anterior region of the jaws, and most of the lesions are asymptomatic, with a considerable number of lesions presenting cortical bone perforation. Only a small amount of lesions were reported as radiographically presenting ill-defined borders. The evaluation of this criterion by radiographs printed on articles is not always reliable, unless the authors describe it in the text. Thus, the radiological features described in our study may be over or underestimated. Despite this limitation, we could not find any relevant difference between follicular, extrafollicular and peripheral variants of AOT, which gives additional support to the unifying concept of AOT histogenesis.11 The clinical and epidemiological profile found in our study confirms results of previous studies.2,12

Only one out of more than 1,500 AOT cases reported in the literature had substantial evidence of recurrence.5 However, information on follow-up was available for a merely 22% of the lesions reported in the literature, and about only 11% of these were followed up for at least 5 years. Another case of recurrence was identified by Ide et al.,13 being reported in two separated publications, both written in Japanese.14,15 The authors of the present review were able to retrieve the most recent paper14 but not the first one15 describing the primary lesion. Moreover, the linguistic barrier would be a limitation in order to properly evaluate the case.

There are some cases in the literature described as recurrent AOTs, but with dubious histopathological results. Takigami et al.16 described a multiple recurrent maxillary AOT with intracranial extension. Rick3 concluded, however, that this was an ameloblastoma. In the case of Toida et al.17 the radiographic examination showed a small, well-defined radiolucent lesion, measuring approximately 5 mm in diameter 77 months after the enucleation of the primary lesion.
Recurrence of the AOT was suspected. However, the patient did not return for further examination.

The cases of Yavas et al. 18 and Lang et al. 19 are other cases described as “recurrent” lesions, but with unconvincing histopathology of AOT. Yoon and Kim 20 described a case of AOT showing a supposed recurrence only 12 months after surgery. However, considering the slow growth potential of AOTs, 3 and the fact that the lesion was initially submitted to marsupialization, this may represent a residual tumor due to inappropriate treatment, 13 even though other cases were submitted to marsupialization followed by enucleation with complete resolution. 21-31 None of these cases were, however, followed up for more than 39 months.

AOT is a successional tooth-associated lesion which develops during the mixed dentition. 11 There has been considerable conjecture as to the nature of this lesion. Recently, KRAS p.G12V mutations were reported in a small cohort of AOT. 32 However, this finding does not prove a neoplastic nature for this tumor because even normal tissues can harbor somatic mutations. On the other hand, a neoplastic biological behavior cannot be discharged only because the tumor is unlikely to recur.

There are some cases described in the literature as multiple AOTs. 32-37 These cases are extremely rare and can be associated with the Schimmelpenning syndrome. 32, 38 They were, therefore, not included in the analyses of the present review.

The limitations of the present study include, first, the retrospective nature of the included studies. Because of the retrospective nature of the study, we could not retrieve some relevant information usually associated with typical AOT, such as presence of enamel hypoplasia and gubernaculum dentis. 11, 39 Second, many of the cases have a short follow-up, which could have led to an underestimation of the virtually inexistent occurrence of recurrences. Third, the fact that most studies reported only one or a small number of patients followed up for a limited period of time.
CONCLUSIONS

AOT variants do not show distinctive clinical and radiological features. Recurrence of AOT is very rare, which justify its conservative management.

ACKNOWLEDGEMENTS

Funding/grant support

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Declaration of conflicting interests

There are no conflicts of interest to declare.

We would like to thank the following people who provided us some articles: Dr. Pedro Infante-Cossio, Dr. Sérgio Bartolomeu de Farias Martorelli, Mr. Wilton Padilha (who sent us Dr. Marize Raquel Diniz da Rosa’s article), Mrs. Claudia Renarte (Librarian at Biblioteca "Dr. H. Lanfranchi Tizeira"), Mrs. Jill Runyan and Mrs. Jessica Lauria (Director of Communications and Communications and Media Coordinator, respectively, of the Florida Dental Association), Mrs. Sabrina Avendaño and Mrs. Claudia Rossi (Librarians of the Asociación Odontológica Argentina), Mr. Noko Reagan Mojela (Editorial Assistant, South African Dental Journal), Dr. Jung-Hoon Yoon, Dr. Seema Kurup, Dr. Jatinder Pal Singh Chawla.

We would like to thank Dr. Jira Chindasombatjaroen for providing missing information about her study.

Last but not least, we would like to thank the librarians of Malmö University (with a special thanks to Ms. Anneli Svensson), who helped us to obtain some articles.

RSG is a research fellow at CAPES, Brazil, Proc. 88881.119257/2016-0.
REFERENCES

This article is protected by copyright. All rights reserved.

FIGURE LEGENDS

Figure 1. Distribution of follicular AOTs, extrafollicular AOTs, and peripheral AOTs according to age (for the cases which the patients’ age was informed).

Figure 2. Topographical distribution of the known precise locations (n=646) of follicular AOTs. Cases involving multiple regions (or an entire quadrant) are indicated between arrows. Numbers at the top and bottom of the lines indicate cases involving both adjoining regions: anterior/premolar, premolar/molar. One asterisk (*) indicates the number of lesions from the mandibular body that reached the angle and/or ramus. For the rest of the lesions (n=93), the location was the ‘maxilla’ (n=36), ‘anterior maxilla’ (n=21), ‘posterior maxilla’ (n=2), ‘mandible’ (n=10), ‘anterior mandible’ (n=21), ‘posterior mandible’ (n=1), and ‘maxillary sinus’ (n=2). For those cases with available information, 89 out of 650 lesions (13.7%) crossed the midline of the jaws, and the maxillary sinus was significantly affected in 78 out 484 lesions (16.1%) in the maxilla. One lesion reached the coronoid process.

Figure 3. Topographical distribution of the known precise locations (n=187) of extrafollicular AOTs. Cases involving multiple regions (or an entire quadrant) are indicated between arrows. Numbers at the top and bottom of the lines indicate cases involving both adjoining regions: anterior/premolar,
premolar/molar. One asterisk (*) indicates the number of lesions from the mandibular body that reached the angle and/or ramus. For the rest of the lesions (n=60), the location was the ‘maxilla’ (n=4), ‘anterior maxilla’ (n=6), ‘posterior maxilla’ (n=14), ‘mandible’ (n=9), ‘anterior mandible’ (n=11), ‘posterior mandible’ (n=15), and ‘maxillary sinus’ (n=1). For those cases with available information, 16 out of 201 lesions (8.0%) crossed the midline of the jaws, and the maxillary sinus was significantly affected in 4 out 129 lesions (3.1%) in the maxilla.

Figure 4. Topographical distribution of the known precise locations (n=25) of peripheral AOTs. Numbers at the top and bottom of the lines indicate cases involving both adjoining regions: anterior/premolar, premolar/molar. For the rest of the lesions (n=5), the location was the ‘maxilla’ (n=4), and not available (n=1). For those cases with available information, 3 out of 27 lesions (11.1%) crossed the midline of the jaws.
Table 1. Demographic and clinical features of 1558 AOTs described in the literature.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Global</th>
<th>Follicular</th>
<th>Extral follicular</th>
<th>Peripheral</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1558</td>
<td>739</td>
<td>247</td>
<td>30</td>
</tr>
<tr>
<td>Age (years), mean±SD (min-max)</td>
<td>19.0±9.0</td>
<td>16.3±6.0</td>
<td>23.9±12.0 (5-82; n=241)</td>
<td>16.5±7.1 (3-37; n=30)</td>
</tr>
<tr>
<td>Men</td>
<td>18.8±9.3</td>
<td>16.2±5.8</td>
<td>26.8±14.4 (9-80; n=85)</td>
<td>16.3±6.6 (9-28; n=7)</td>
</tr>
<tr>
<td>Women</td>
<td>19.2±8.9</td>
<td>16.3±6.1</td>
<td>22.3±10.1 (5-82; n=156)</td>
<td>16.5±7.4 (3-37; n=23)</td>
</tr>
<tr>
<td>p value a</td>
<td>0.016</td>
<td>0.578</td>
<td>0.094</td>
<td>0.787</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>538 (34.8)</td>
<td>246 (33.4)</td>
<td>87 (35.2)</td>
<td>7 (23.3)</td>
</tr>
<tr>
<td>Women</td>
<td>1010 (65.2)</td>
<td>491 (66.4)</td>
<td>160 (64.8)</td>
<td>23 (76.7)</td>
</tr>
<tr>
<td>Unknown</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jaw, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxilla</td>
<td>940 (61.8)</td>
<td>484 (65.5)</td>
<td>129 (52.4)</td>
<td>27 (93.1)</td>
</tr>
<tr>
<td>Mandible</td>
<td>582 (38.2)</td>
<td>255 (34.5)</td>
<td>117 (47.6)</td>
<td>2 (6.9)</td>
</tr>
<tr>
<td>Unknown</td>
<td>36</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Bone expansion, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>724 (89.5)</td>
<td>486 (90.5)</td>
<td>170 (85.4)</td>
<td>-</td>
</tr>
<tr>
<td>No</td>
<td>85 (10.5)</td>
<td>51 (9.5)</td>
<td>29 (14.6)</td>
<td>-</td>
</tr>
<tr>
<td>Unknown</td>
<td>749</td>
<td>202</td>
<td>48</td>
<td>-</td>
</tr>
<tr>
<td>Symptomatic, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>97 (11.9)</td>
<td>57 (10.8)</td>
<td>26 (13.3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>No</td>
<td>721 (88.1)</td>
<td>469 (89.2)</td>
<td>170 (86.7)</td>
<td>23 (100)</td>
</tr>
<tr>
<td>Unknown</td>
<td>740</td>
<td>213</td>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>Cortical bone perforation, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>115 (45.6)</td>
<td>85 (45.2)</td>
<td>30 (47.6)</td>
<td>-</td>
</tr>
<tr>
<td>No</td>
<td>137 (54.4)</td>
<td>103 (54.8)</td>
<td>33 (52.4)</td>
<td>-</td>
</tr>
<tr>
<td>Unknown</td>
<td>1306</td>
<td>551</td>
<td>184</td>
<td>-</td>
</tr>
<tr>
<td>Condition</td>
<td>Yes</td>
<td>No</td>
<td>Unknown</td>
<td>Total</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Cortical bone thinning, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>381 (96.7)</td>
<td>291 (97.0)</td>
<td>90 (95.7)</td>
<td>762</td>
</tr>
<tr>
<td>No</td>
<td>13 (3.3)</td>
<td>9 (3.0)</td>
<td>4 (4.3)</td>
<td>26</td>
</tr>
<tr>
<td>Unknown</td>
<td>1164</td>
<td>439</td>
<td>153</td>
<td>1756</td>
</tr>
<tr>
<td>Bone erosion, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>8 (47.1)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>-</td>
<td>9 (52.9)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Locularity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unilocular</td>
<td>633 (98.9)</td>
<td>461 (98.9)</td>
<td>154 (98.7)</td>
<td></td>
</tr>
<tr>
<td>Multilocular</td>
<td>7 (1.1)</td>
<td>5 (1.1)</td>
<td>2 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>918</td>
<td>273</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Radiological borders, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ill-defined</td>
<td>7 (1.3)</td>
<td>5 (1.2)</td>
<td>2 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Well-defined</td>
<td>549 (98.7)</td>
<td>412 (98.8)</td>
<td>131 (98.5)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>1002</td>
<td>322</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>Tooth root resorption, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>86 (17.1)</td>
<td>60 (17.3)</td>
<td>26 (20.3)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>418 (82.9)</td>
<td>286 (82.7)</td>
<td>102 (79.7)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>1054</td>
<td>393</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Treatment, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1 (0.1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Excision</td>
<td>18 (2.2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>18 (85.7)</td>
</tr>
<tr>
<td>Marsupialization</td>
<td>16 (2.0)</td>
<td>13 (2.3)</td>
<td>1 (0.5)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Curettage</td>
<td>32 (4.0)</td>
<td>22 (3.8)</td>
<td>9 (4.6)</td>
<td>1 (4.8)</td>
</tr>
<tr>
<td>Enucleation</td>
<td>733 (90.6)</td>
<td>532 (93.0)</td>
<td>180 (92.8)</td>
<td>2 (9.5)</td>
</tr>
<tr>
<td>Marginal resection</td>
<td>6 (0.7)</td>
<td>4 (0.7)</td>
<td>2 (1.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Segmental resection</td>
<td>3 (0.4)</td>
<td>1 (0.2)</td>
<td>2 (1.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Unknown</td>
<td>749</td>
<td>167</td>
<td>52</td>
<td>9</td>
</tr>
<tr>
<td>Recurrence, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1 (0.2)</td>
<td>1 (0.2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>No</td>
<td>644 (99.8)</td>
<td>455 (99.8)</td>
<td>155 (100)</td>
<td>13 (100)</td>
</tr>
<tr>
<td>Unknown</td>
<td>913</td>
<td>283</td>
<td>92</td>
<td>17</td>
</tr>
<tr>
<td>Follow-up time (months), mean±SD (min-max)</td>
<td>30.0±36.3 (1-300; n=352)</td>
<td>28.5±32.9 (1-232; n=250)</td>
<td>32.2±35.7 (1-174; n=91)</td>
<td>48.1±89.9 (2-300; n=10)</td>
</tr>
<tr>
<td>Lesion size (cm), mean±SD (min-max)</td>
<td>3.3±1.7 (0.5-12.0; n=423)</td>
<td>3.6±1.7 (0.7-12.0; n=306)</td>
<td>2.5±1.4 (0.5-7.5; n=102)</td>
<td>1.9±0.9 (0.5-3.0; n=11)</td>
</tr>
</tbody>
</table>

SD – standard deviation

a Comparison of the mean age between men and women (Mann-Whitney test)
b Peripheral lesions only
c Resection with continuity defect