Examensarbete
15 högskolepoäng

Elevers lärande genom utomhusmatematik

Pupils learning through outdoor mathematics

Gustav Björk
Marie Melsen
Sammanfattning

Nyckelord

algebra, algebraiska likheter, elevers lärande, pre-algebra, utomhusmatematik, utematematik, utematte
Innehållsförteckning

1 INLEDNING ... 7
 1.1 BEGREPPSDEFINITIONER ... 8
3 LITTERATURGENOMGÅNG ... 9
 3.1 SKOLANS UPPDRAG ... 9
 3.2 NÄRMILJÖ SOM LÄROMEDEL ... 9
 3.3 BETYDELSEN AV UTOMHUSUNDERVERSIK .. 10
 3.4 ELEVERS LÄRANDE ... 12
 3.5 ELEVERS FÖRSTÄELSEL FÖR ALGEBRA .. 14
4 METOD .. 16
 4.1 URVAL .. 16
 4.2 DATANSAMLINGSMETODER ... 19
 4.2.1 Intervjuer .. 19
 4.2.2 Observationer ... 20
 4.3 UNDERVERSIKSFÖRSÖK ... 21
 4.4 PROCEDUR ... 21
 4.4.1 Gruppsamtal ... 21
 4.4.2 Undervisningsförsök .. 21
 4.5 INTERVIJER .. 22
5 RESULTAT ... 22
 5.1 GRUPPINTERVIJU .. 23
 5.2 UNDERVERSIKSFÖRSÖK MED OBSERVATION ... 23
 5.2.1 Gruppdynamiken inomhus .. 23
 5.2.2 Uppgifterna inomhus ... 23
 5.2.3 Gruppdynamiken utomhus .. 24
 5.2.4 Uppgifterna utomhus ... 24
 5.3 KVALITATIVA INTERVIJER .. 25
 5.3.1 Inomhusgruppen ... 25
 5.3.2 Utomhusgruppen .. 26
 5.4 SAMMANFATTNING AV RESULTATEN .. 27
6 DISKUSSION ... 28
 6.1 TILLFÖRLITLIGHET ... 28
 6.2 ALGEBRAISKA LIKHETER UTOMHUS RESPEKTIVE INOMHUS 28
 6.3 GRUPPENS ARBETE UTOMHUS JÄMFÖRT MED INOMHUS 29
 6.4 LÄRARNAS ANSVAR .. 30
 6.5 SLUTSATSER ... 31
 6.6 FRAMTIDA UNDERSÖKNINGAR ... 32
7 REFERENSER ... 33
BILAGOR .. 35
1 Inledning

Som färdiga lärare ska vår planering av undervisning utgå från målen i läroplanen för det obligatoriska skolväsendet (Lpo 94) och kursplanen. För att eleverna ska uppnå dessa mål och samtidigt känna att det är meningsfullt och lustfylld måste vi använda oss av matematik som bygger på elevernas erfarenheter och som de känner att de har nytta av. För att kunna göra ett bra arbete som färdiga lärare vill vi veta hur elevers lärande påverkas av olika miljöer och undervisningsförhållanden.
1.1 Begreppdefinitioner

Begreppdefinitionerna är vår tolkning av beskrivningar vi hittat i litteraturen samt i vissa fall citat. Definitionen är till för att läsaren lättare ska förstå vad vi menar med begreppen vi använder. I undersökningen har vi valt att använda begreppet *utomhusmatematik* för att den benämningen oftast nämns i litteraturen samt vid sökningar på Internet. Utematematik och utematte är andra vanliga uttryck med samma betydelse.

Algebra: Varje slags matematisk verksamhet som har att göra med generaliserade beräkningsprocesser. När eleverna använder symboler för generaliserade. Algebra används också vid omskrivning och förenkling av uttryck, lösning av ekvationer och när samband och relationer beskrivs.

Instrumentell förståelse: Eleverna lär sig följa regler och formler mekaniskt. De förstår inte sammanhanget i matematik. De har svårt att förklara varför de använder vissa formler och regler.

Pre-algebra: Algebra som är till för barn/elever i förskolan och de tidiga skolåren. Uppgifterna innehåller inga bokstavssymboler utan inriktar sig på att barnen/eleverna ska se relationer, samband och mönster. Symbolerna kan vara av olika slag till exempel konkreta föremål, figurer och tomma rutor.

Relationell förståelse: Eleverna förstår sammanhanget i matematik. De förstår varför de gör uträkningar. Eleverna förstår också innebörden av en formel, kan härleda den och vet när de ska tillämpa den.

Traditionell undervisning: Kan beskrivas som en undervisning där läroböckerna är dominerande. Läraren går igenom det som eleverna sedan ska arbeta med i sina arbetsböcker. Eleverna arbetar ofta i egen takt utan kommunikation.

Utomhuspedagogik: Att lära genom sinnliga och praktiska erfarenheter i utomhusmiljö.
2 Syfte och frågeställningar

Syftet med denna undersökning är att utvärdera hur utomhusmatematik jämfört med traditionell matematikundervisning kan påverka elevers förståelse för begreppet algebra. Vi vill även undersöka om/hur gruppdynamiken påverkas av undervisningen i utomhusmiljö. Våra ambitioner är att få vår teori/kunskap om goda inlärningsmiljöer bekräftad och att fler lärare ska se fördelar med att delar av elevernas undervisning sker utomhus.

- Vilka skillnader kan finnas, i elevernas sätt att lösa uppgifter, då man arbetar med algebraiska likheter utomhus respektive inomhus?
- Hur påverkas gruppdynamiken då eleverna arbetar utomhus jämfört med inomhus?

3 Litteraturgenomgång

3.1 Skolans uppdrag

3.2 Närmiljö som läromedel
att det är viktigt att lärandet sker i olika sammanhang och situationer såsom skolgården, parker, soptippen med mera. I Lundegård m fl. anser Strotz & Svenning att en stor del av den svenska skolverksamheten är förlagd inomhus, böckerna är oftast dominerande. Författarna menar att skolverksamheten måste vidga denna syn på inlärning och förstå värdet av andra vägar till att nå kunskap. Dessa vägar att nå kunskap är mer engagerande för både lärare och i synnerhet för elever.

3.3 Betydelsen av utomhusundervisning
För att eleverna ska få utlopp för sin energi, få känna att de gör ett meningsfullt arbete och utvecklas bra menar Freinet (Nordheden 1995) att den fysiska miljön måste ordnas såväl
inne som ute. Författaren skriver också att eleverna ska vara utomhus så mycket som möjligt, helst ska det vara en miljö som bidrar till positiv utveckling och stimulerar elevernas fantasi.

Matematik är en levande mänsklig konstruktion och en kreativ och undersökande aktivitet som omfattar skapande, utforskaningsverksamhet och intuition. Undervisningen skall ge eleverna möjlighet att utöva och kommunicera i meningsfulla och relevanta situationer i ett aktivt och öppet sökande efter förståelse, nya insikter och lösningar på olika problem.

(Kursplanen i matematik 2002 s27)

3.4 Elevers lärande

Malmer (2002) anser att dagens elever får använda alldeles för lite av sitt logiska tänkande i matematikundervisningen. Eleverna räknar istället på i sin bok utan att reflektera över vad det är de egentligen gör. Författaren anser även att likhetstecknet är ett av de viktigaste momenten i matematikundervisningen och därför bör ha en särställning i undervisningen. Hon menar att lärarna med fördel kan introducera tecknet för likhet (=) och olikhet (≠) nästan samtidigt. Om detta görs anser Malmer att eleverna får utgå från helheten och att man undviker uttrycket ”blir”, som annars lätt blir en synonym till ”är lika med”. Hon menar att eleverna riktar koncentrationen på att observera likheten och krets tar mindre kring siffrorna.

Ahlberg (1992) menar att det är svårt för alla elever att komma till tals vid diskussioner i större grupper eller vid samtal i helklass. Hon menar dessutom att det ibland kan förekomma att några elever ständigt intar en lyssnande roll och inte vill delta i diskussionen. När elever diskuterar i mindre grupper ökar möjligheterna för de tysta och tillbakadragna eleverna att delta i samtalet (Ahlberg 1992)
Skemp (1976) använder beteckningarna instrumentell förståelse och relationell förståelse vilka han menar är så olika att det tillhör skilda typer av ämnet matematik. Vid instrumentell förståelse, har eleven tillgång till färdiga planer för att ta sig från en startpunkt till mål. Eleverna kommer snabbt vidare genom att bara memorera formler men har ingen aning av vad de gör, till exempel uppgifter vars syfte är att eleverna ska lära sig regler, formler och förfarandessätt. Vid relationell förståelse, förstår eleven strukturen och kan själv tänka och konstruera sina egna lösningar till ett matematiskt problem, till exempel uppgifter där eleven uppmuntras till att se sambanden och dra egna paralleller. Skemp menar att många lärare använder sig av traditionella undervisningsmetoder som leder till att eleverna får en instrumentell förståelse.

Erlwanger (1973) visar i en artikel vad som kan hända om man som lärare enbart litar på ett material. Han menar att lärarna förväntar sig att eleverna har kommit långt i sin utveckling eftersom de har uppnått bra poäng på proven och kommit långt med uppgifterna. Eleverna lär sig snabbt att känna igen hur läroböcker, tillhörande prov och diagnoser är uppbyggt. De följer samma princip och mönster vilket medför att eleven lätt kan skapa sig en bild av att matematik endast är regler och svar. Eleverna utvecklar felaktiga inlärningsmetoder och uppfattningar om matematik vilket hindrar deras framtida utveckling. Läroböckernas facit säger inget om eleverna gör ett enkelt räknefel eller om de tänker rätt så länge uträkningen inte stämmmer överens med svaret som läroboksförfattaren ville ha.

Hannula (2005) har under en tre år lång studie sökt rollen av känslomässiga reaktioner i social koordination inom problemlösning. Detta har han undersökt via intervjuer av elever, lärare och föräldrar och observation av elever. Han fann att den sociala samverkan och känslorna
hos eleverna varierade beroende på både gruppsammansättning och typ av uppgift. Han kunde tydligt urskilja kognitiv intimitet och defensiva strategier. Den kognitiva intimiteten sker mellan personer som har samma åsikter och de kan enkelt gå upp i sin uppgift. De defensiva strategierna används av dem som inte förstår andra personer inom gruppen eller helt enkelt inte håller med. Strategierna kan vara av olika typer:

• Försöker komma in i samtalet mellan övriga i gruppen
• Uttrycker att de inte gillar uppgiften
• Skrattar åt sig själva när de har fel

Hans uppfattning av bästa gruppen är när hela gruppen delar den kognitiva intimiteten.

3.5 Elevers förståelse för algebra
Många elever har problem med algebra på grund av att ett stort antal lärare endast ser det som en logisk aktivitet med bestämda regler utan att fundera över reglernas ursprung (Kilborn & Löwing 2002)

För att ge alla elever, speciellt de lägre presterande eleverna, en för dem logisk och kontinuerlig inlärningsmiljö krävs det en långsiktig planering från förskola till gymnasium. En sådan planering kräver att alla de lärare som under olika skolar undervisar en elevgrupp i matematik är överens om såväl synen på undervisning och inlärning som när och hur olika moment bör behandlas.

(Löwing & Kilborn 2002 s89)

Det har föreslagits att algebra skall introduceras tidigare i matematiken och man har därför i undervisningen infört moment som pre-algebra, förberedande/inledande algebra och algebra i grundskolan som förslagvis förlagts till åk 1−5, åk 6−7 respektive åk 8−9 (Malmer 2002).
Malmer menar att elevers svårigheter i övergången från aritmetiken till algebra beror på att det matematiska språket ändrar karaktär. Hon anser att ett viktigt steg i förståelsen av grundläggande algebra är att eleverna måste förstå att symboler eller bokstäver i en ekvation är tal.

Malmer (2002) sammanfattar vad undervisningens målsättning i algebra bör vara, nämligen att utveckla elevers förmåga att:

- kunna ta sig från ett specifikt problem till ett generellt påstående,
- kunna uttrycka generaliseringar algebraiskt,
- manipulera det algebraiska uttrycket, samt
- tolka resultatet.

(Malmer 2002 s146)

För att underlätta inlärningen av algebra ger Persson (2007) några rekommendationer:

- Man bör skapa övningar i vilka symboliseringen i lösnings-proceduren är lika viktig som att finna den rätta lösningen.
- Övningar bör designas så att strukturering och skapande av schemata blir viktigt, meningsfullt och även nödvändigt.
Elever bör ges möjlighet att reflektera över sina tankestrategier och när det algebraiska tänkandet används.

Elever bör medvetet konfronteras med välkända algebraiska svårigheter och göras medvetna om dem.

Elever bör tränas i att rutinmässigt kontrollera sina lösningar för att på så sätt uppnå en högre säkerhet.

(Persson 2007 s32)

4 Metod

För att få svar på våra frågeställningar har vi valt att arbeta med gruppsamtal, kvalitativa intervjuer och observationer av undervisningsförsök.

4.1 Urval

Klassificeringen av eleverna gjordes av den ansvarige läraren och grundade sig på hur aktiva eleverna är på lektionerna och hur de arbetar i matematikboken. Med matematikboken menas resultat på diagnostiska prov, samarbetsövningar och hur de kommunicerar under lektionen.
Inomhusgruppen

Elev A
Kön: Pojke
Matematikkunskaper: Över medel
Samarbetsförmåga: Bra
Övrigt: Svarar gärna på frågor och visar sin åsikt.

Elev B
Kön: Flicka
Matematikkunskaper: Medel
Samarbetsförmåga: Bra
Övrigt: Svarar sällan på frågor och sitter ofta tyst i diskussionen

Elev C
Kön: Pojke
Matematikkunskaper: Medel
Samarbetsförmåga: Bra
Övrigt: Svarar gärna på frågor och visar gärna sin åsikt

Elev D
Kön: Flicka
Matematikkunskaper: Över medel
Samarbetsförmåga: Mycket bra
Övrigt: Svarar gärna på frågor och visar gärna sin åsikt.

Elev E
Kön: Pojke
Matematikkunskaper: Medel
Samarbetsförmåga: bra
Övrigt: Svarar gärna på frågor och pratar mycket i diskussionen.

Elev F
Kön: Flicka
Matematikkunskaper: under medel
Samarbetsförmåga: Dålig
Övrigt: Svarar sällan på frågor och sitter ofta tyst i diskussionen.

Utomhusgruppen
Elev 1
Kön: Pojke
Matematikkunskaper: Över medel
Samarbetsförmåga: Mycket bra
Övrigt: Svarar gärna på frågor och visar gärna sin åsikt.

Elev 2
Kön: Flicka
Matematikkunskaper: Medel
Samarbetsförmåga: Bra
Övrigt: Visar sin åsikt och svarar på frågor.

Elev 3
Kön: Pojke
Matematikkunskaper: Under medel
Samarbetsförmåga: Dålig
Övrigt: Svarar sällan på frågor och sitter ofta tyst i diskussionen.

Elev 4
Kön: Flicka
Matematikkunskaper: Medel
Samarbetsförmåga: Bra
Övrigt: Svarar gärna på frågor och pratar mycket i diskussionen.

Elev 5
Kön: Pojke
Matematikkunskaper: Medel
Samarbetsförmåga: Bra
Övrigt: Svarar gärna på frågor och visar gärna sin åsikt.
Elev 6
Kön: Flicka
Matematikunskaper: Över medel
Samarbetsförmåga: Bra
Övrigt: Svarar gärna på frågor och visar gärna sin åsikt.

4.2 Datainsamlingsmetoder
Innan vi påbörjade vår undersökning gjorde vi en pilotundersökning för att se hur vår planering för gruppsamtal och intervjufrågor fungerade. Det visade sig vara mycket nyttigt, och vi gjorde vissa förändringar i frågornas formulering för att undvika missförstånd.

4.2.1 Intervjuer
informationen att syftet med bandupptagning endast är till för att författarna ska kunna tolka det som sagts i efterhand. Vår undersökning utfördes den 20 november 2007. Våra gruppssamtalsfrågor och intervjufrågor är kopplade till frågeställningarna och är indelade i följande område:

- Förförståelse och attityd
- Aktuell undervisningsstrategi
- Elevernas upplevelser av lektionen
- Elevernas kunskaper
- Hur de lär sig matematik

4.2.2 Observationer

- Gruppen som helhet (samarbete, kommunikation och utbyte av matematiska färdigheter).
• Individuellt (förmåga att samarbeta, kommunikation och matematiska färdigheter).

4.3 Undervisningsförsök
Vi valde att göra två undervisningsförsök, ett inomhus och ett utomhus.
Undervisningsförsöket inomhus anpassades efter en traditionell undervisning och var snarlik
det som eleverna arbetat med tidigare. Undervisningsförsöket utomhus var likadana uppgifter
som inomhus, fast här fick eleverna lösa dem med konkret material. Vi valde uppgifterna för
att jämföra eventuella skillnader i elevernas sätt att lösa uppgifterna samt hur gruppen
påverkades inomhus respektive utomhus. För att få ett så exakt resultat som möjligt hade vi
lika uppgifter, samma iakttagelseschema och hjälpte eleverna lika mycket inomhus som
utomhus. De två olika grupperna bestod av olika elever för att uppgifterna inte skulle känna
undervisningsgrupp. Vidare skriver de att det är bra att komplettera med observation och
intervjuer, så får man en allsidigare och djupare förståelse av det man undersöker.

4.4 Procedur

4.4.1 Gruppsamtal
Innan gruppsamtalet började presenterade vi oss och förklarade varför vi var där och hur
vi skulle gå till väga. Vi plockade ut de sex elever som skulle vara med på första
undervisningsförsöket som vi hade inomhus. Gruppsamtalet var i ett klassrum där eleverna
satt vid ett runt bord tillsammans med den som intervjuade. Den som observerade stod i
bakgrunden och förde anteckningar, spelade in på band och ställde följdfrågor vid behov. I
den andra gruppen genomfördes gruppsamtalet utomhus innan vi började med
undervisningsförsöket. Gruppsamtalen tog ungefär 10 minuter per grupp.

4.4.2 Undervisningsförsök
Vi genomförde två lärarledda lektioner där vi observerade tolv elever. Sex elever var med
på undervisningsförsöket inomhus och sex var med utomhus. Vi hade avsatt tid till 30
minuter för varje undervisningsförsök varav vi utnyttjade 30 minuter inne och 20 minuter
ute.

Inomhus
Eleverna satt gemensamt i ett klassrum vid ett runt bord. Eleverna märktes med
bokstäverna A till F för att underlätta för observatören. Den som höll i undervisnings-
försöket satt med eleverna utan att delta i elevernas eventuella diskussion. Observatören
satt i bakgrunden och förde anteckningar och spelade in på band. Läraren gick genom att

Utövning

4.5 Intervjuer

5 Resultat

Nedan redovisar vi resultaten som vi fick från gruppsamtal, observationer av undervisningsförsök och intervjuer kopplat till frågeställningarna:

Frågeställningar
- Vilka skillnader kan finnas, i elevernas sätt att lösa uppgifter, då man arbetar med algebraiska likheter utomhus respektive inomhus?
- Hur påverkas gruppdynamiken då eleverna arbetar utomhus jämfört med inomhus?
5.1 Gruppintervju
Samtliga elever var positivt inställda till matematik. Eleverna tyckte att det var roligt med matematik där man fick tänka lite, såsom läsetal, räkna med X och göra uppställningar.
Samtliga svarade att de sällan hade utomhuslektioner. Vid de tillfällen de varit ute hade de oftast haft utflykt, men ibland hade de lärt sig om knoppisar (knoppar på träd) eller varit ute och mätt. Svaren på frågan hur de tror de lär sig bäst delade vi in i tre följande svarskategorier, där inomhus fick flest svar.

- Inomhus (8 elever). För där finns matematikboken och läraren som hjälper till.
- Lika (2 elever). Det beror på vad man ska lära sig.

5.2 Undervisningsförsök med observation

5.2.1 Gruppdynamiken inomhus

5.2.2 Uppgifterna inomhus
\[\odot + 2 = 8. \] Samtliga elever klarade denna uppgift. De tyckte uppgiften var enkel och hade gjort många av dessa i sina matematikböcker. Tankarna kring hur de löste uppgiften var också desamma, \[8 – 2 = 6. \] När de löste denna uppgift såg de sambandet mellan addition och subtraktion.

☺ + ☺ + 2 = 10. Tre av eleverna klarade uppgiften fast de använde inte samma tal under ☺ och tre av eleverna (A, B och E) hade inte samma summor i höger och vänsterledet. Vid genomgång av uppgiften insåg samtliga att deras uträkningar inte stämde och kunde med hjälp komma fram till det rätta svaret.

☺ + ☺ = ☺ + 3. Inga elever klarade uppgiften. Samtliga skrev 1 + 1 = 3 + 1. När vi frågade hur de tänkte kunde de inte svara. Till slut upptäckte A att uppgiften inte stämde och kunde med hjälp lösa uppgiften. De andra i gruppen förstod fortfarande inte uppgiften trots att det rätta svaret skrivits.

5.2.3 Gruppdynamiken utomhus

5.2.4 Uppgifterna utomhus
☺ + 2 = 8. Samtliga elever klarade denna uppgift. Tankarna kring hur de löste uppgiften var att det ska vara samma på varje sida om pinnen. Då måste det alltså vara sex stenar under lövet, för att sex plus två är åtta.

14 = ☺ + ☺ + 4. Eleverna räknade stenarna tillsammans och löste uppgiften utan så mycket diskussion. De tyckte det var likt uppgiften de gjort precis.

5.3 Kvalitativa intervjuer

5.3.1 Inomhusgruppen

1. Hur tyckte du lektionen var?
 Samtliga elever svarade att de tyckte lektionen var kul.

2. Varför var den rolig?
 A: Vet inte.
 B: För jag slipper att ha lektion inomhus. Får man läxa på det man missat inomhus?
 C: För att det första var enkelt, sen de andra svårare.
 D: Det var roligt för det var klurigt.
 E: Alla trodde de hade rätt på alla uppgifterna men de flesta var fel.
 F: Vissa var enkla och vissa svåra.
3. Kan du berätta något du lärt dig?
 B: Räkna med smilegubbar.
 C: Att där ska vara samma siffra under varje gubbe.
 D: Att där ska vara samma på varje sida.
 E: Att där kan var mer än en tom ruta i ett tal.
 F: Räkna med gubbar fast vi gjort det med rutor innan, men inte så här många.

4. Hur kan man lära sig matematik?
 A: Räkna på fingrarna.
 B: Räkna på fingrarna.
 C: I skolan, i matteboken och med fröken.
 D: Att någon förklarar och visar hur man gör.
 E: Först att fröken visar på tavlan sen gör man samma sak i boken.
 F: Vet inte, kanske öva med föräldrarna och i boken.

5.3.2 Utomhusgruppen
 1. Hur tyckte du lektionen var?
 Samtliga elever tyckte _rolig_.

 2. Varför var den rolig?
 1: Lärorik man lärde sig att man kan räkna ute.
 2: Det är roligt att vara utomhus.
 3: Vi räknade inte så mycket.
 4: För att jag gillar matte.
 5: Vi fick leka lite i början.
 6: Utomhus är kul.

 3. Kan du berätta något du lärt dig?
 1: Hur man kan räkna med saker ute i naturen, man kan räkna annat också, träd och bilar.
 2: Räkna utan böcker
3: Jag lärde mig hur man kan hålla värmen när man fryser.
4: Göra matte ute, med löv och stenar.
5: Inget.
6: Hemliga tal under löven.

4. Hur kan man lära sig matematik?
1: *Man kan hitta på egna sätt och räkna på både ute och inne. Man kan också få göra egna tal.*
2: *Räkna stenar eller annat ute och inne i matteboken med fröken.*
3: *Man kan räkna när man är i affären. Det måste man kunna.*
4: *När man ställer upp.*
5: *Utomhus var kul. Man kan också räkna tal i boken.*
6: *I skogen eller i matteboken*

5.4 Sammanfattning av resultaten
Samtliga elever i undersökningen var positivt inställda till matematik, för att *de fick tänka och lösa kluriga saker.* Eleverna tyckte att man lär sig bäst inomhus och utomhus.
lösa uppgiften, diskuterade de gemensamt fram de rätta svaren. Det märktes en tydlig skillnad på pojkarna som var betydligt lugnare vid utomhusundervisningen.

6 Diskussion

I denna del kommer vi att diskutera undersökningens resultat genom att utgå från forskningsfrågorna och jämföra resultatet med litteraturen vi läst och våra egna åsikter och slutsatser. Vi kommer även att nämna några områden som är intressanta för framtida undersökningar. Syftet med denna undersökning var att utvärdera om utomhusmatematik påverkade elevers förståelse för begreppet algebra samt om gruppdynamiken påverkades av denna inlärningsmiljö.

6.1 Tillförlitlighet

Vi försökte hålla oss objektiva under gruppsamtalen och intervjuerna men det är möjligt att vi har ställt följdfrågor för att komma fram till det svaret vi förväntade oss. Även intervjurespondenterna kan ha påverkats av en vilja att svara korrekt och därmed svarat på ett sätt som vi eftersträvade. En bandupptagning kan påverka respondentens sätt att tala öppet när denne är medveten om bandupptagning. För att minimera denna påverkan har de intervjuade fått informationen att syftet med bandupptagning endast är till för att författarna ska kunna tolka det som sagts i efterhand (Denscombe 2000).

6.2 Algebraiska likheter utomhus respektive inomhus

Under vår utbildning har vi fått lära oss att olika undervisningssituationer och undervisningsmiljöer påverkar elevernas lärande. Det är vår skyldighet som lärare att variera undervisningen så att alla elever uppnår kursmålen. Vi visste genom litteratur att många elever lär sig bättre genom att arbeta med matematik utomhus. Vi antog att vår undersökning skulle bli missvisande på grund av att elevernas logiska tänkande hade hämmats av den

6.3 Gruppens arbete utomhus jämfört med inomhus

6.4 Lärarnas ansvar

dersa varierande förutsättningar. Författaren menar också att det är viktigt att eleverna
över upp sin förmåga att själva undersöka, upptäcka och uppleva.

Lärare känner sig osäkra och vågar inte lita på sin egen planering, utan förlitar sig mer
på en lärobok och på ”experten”. Här kan en väl planerad fortbildning och
gruppverksamhet betyda oerhört mycket.

(Malmer 2002 s25)

Vi upplever att många lärare vet att eleverna lär sig bäst genom samspel och kommunikation
med andra. De vet också att undervisningen bör utgå ifrån elevernas erfarenheter och att den
skal vara meningsfull och lustfyld. Trots detta har vi sällan stött på denna undervisning, utan
när eleverna har matematik räknar de nästan uteslutande i matematikböcker. Detta kan bero
på osäkerhet i ämnet eller på ren bekvämlighet. Vi anser att det är viktigt att pedagogerna
frågar sig varför och hur eleverna ska lära sig. Det är även viktigt att pedagogerna granskar
sig själva och sin undervisning ofta, för att förnyelse i undervisningen ska ske och för att de
inte ska hamna i ett visst undervisningsmönster. Det är viktigt att undervisningen tar hänsyn
till att elever behöver olika undervisningssätt för att nå de uppsatta målen.

Vi anser att det är oerhört viktigt att alla lärare i matematik omsorgsfullt och grundligt lägger
upp flera olika strategier för hur de ska lära yngre elever, som är i början av sitt matematiska
liv, tänka algebra. Det visar sig nämligen att flera av de informella strategier som används av
barn under de första skolåren kan förädlas för att senare kunna ge dem en djupare förståelse
inom matematik (Löwing & Kilborn 2002).

6.5 Slutsatser
Här besvarar vi våra frågeställningar på ett sammanfattande sätt.

Vilka skillnader kan finnas, i elevernas sätt att lösa uppgifter, då man arbetar
med algebraiska likheter utomhus respektive inomhus?

Vi märkte tydliga skillnader på våra undervisningsförsök utomhus respektive inomhus.
Elevernas logiska tänkande ökade utomhus och de uppfattade uppgifterna betydligt
enklare att lösa än vad eleverna inomhus gjorde. Eleverna som arbetade inomhus var mer
stressade och vi upplevde det som de mestadels ville få fram rätt svar för vår skull.

Hur påverkas gruppdynamiken då eleverna arbetar utomhus jämfört med inomhus?

6.6 Framtida undersökningar

Som framtida undersökningar skulle vi vilja göra vår undersökning med ett större antal elever för att öka möjligheten att dra generella slutsatser kring hur lärandet av algebraiska likheter sker på bästa sätt och hur gruppclimatet påverkas av olika inlärningsmiljöer. Vi anser också att det hade varit relevant att göra undersökningar kring lärarens syn på hur elever läser algebraiska likheter bäst och varför deras undervisning ser ut som den gör.
7 Referenser

Persson Per-Eskil (071030) Föreläsning, Malmö Högskola, Lärarutbildningen. *Algebra från förskola till högskola.*

Bilagor

Bilaga 1

Till vårdnadshavare för eleverna i 4:an

Vi heter Gustav Björk och Marie Melsen och läser sista terminen på lärarutbildningen. Under hösten skriver vi examensarbete inom matematik.

Syftet med vår undersökning är att utvärdera om utomhusmatematik påverkar elevers förståelse för algebra samt hur denna inlärningsmiljö kan påverka gruppdynamiken.

Vänligen fyll i lappen och lämna till Jeanette.

Har ni några frågor är ni välkomna att ringa oss:

Gustav Björk XXXXXXXX
Marie Melsen XXXXXXXX

Med vänliga hälsningar

Gustav och Marie

__

Mitt barn får vara med i undersökningen

JA NEJ

Elevens namn__

Vårdnadshavarens underskrift__
Bilaga 2

Gruppsamtal (både inne- och utomhusgruppen men var för sig)

1. Vad tycker du om matematik?
 1a. Vad är det som är roligt och varför?
 1b. Vad är det som är tråkigt och varför?
2. Hur ofta har ni lektioner utomhus?
3. Vad gör ni när ni har lektioner utomhus?
4. Vad lär ni er då?
Bilaga 3

Intervjufrågor efter inne- och utomhuslektionen (individuellt)

1. Hur tyckte du lektionen var?
2. Varför var den rolig respektive tråkig?
3. Kan du berätta något du lärt dig?
4. Hur kan man lära sig matematik?
Bilaga 4

Undervisningsförsök inomhus

☺ + 2 = 8 ☺+☺ = 6 ☺ + ☺ = 3 + ☺ ☺ + ☺ +2 = 10

14 = ☺ + ☺ + 4

Undervisningsförsök utomhus

Bilaga 5
Iakttagelseschema för att bedöma elevernas insatser vid grupparrbeten

Elever: ________________________
Observatörens namn: ________________ Datum och tid: ________________
Plats/lokal: ________________________ Närvarande personer: ____________

Samarbetar __ Vill styra allt själv
Argumentera ___ Är tyst
Lyssnar på andra ___ Lyssnar inte på andra
Vidarutvecklar andras tankar __ Använder bara sina egna tankar
Håller sig till uppgiften __ Leder in gruppen på annat
Använder matematiskt språk __ Använder bara vardagliga ord

Vilka ord och uttryck använder eleverna:

Vem diskuterar kring uppgiften

Inspirerat från det Nationella provet i matematik för skolår 5, år 1999 http://www1.lhs.se/prim/matematik/amnesprov_5.html