Malmö University Publications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Li, Chong
    et al.
    Malmö högskola, School of Technology (TS).
    Espinosa, Rogelio
    Malmö högskola, School of Technology (TS).
    Ståhle, Per
    Malmö högskola, School of Technology (TS).
    Fracture mechanics for membranes2004Conference paper (Other academic)
    Abstract [en]

    During fracture of membranes loading often produces buckles above and below the crack surface. This changes the stress state surrounding the crack-tip and stresses in the neighbourhood of the crack-tip posses a weaker singularity than r-1/2. As a result, fracture occurs when the crack-tip stress distribution is different as compared with that when buckling is artificially prevented. Therefore the conditions for transfer of lab results to real structures are changed. The weaker singularity is here utilised to formulate an adopted fracture mechanical theory. An approximate application is made based on an assumption that the buckled area of the paper is incapable of carrying load. This region is approximated with the region that is under compressive load at plane stress conditions. The result is compared with experiments performed on paper. The importance of the linear extent of the process region has on the energy available for fracture is discussed.

    Download full text (pdf)
    FULLTEXT01
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf