Large-scale Multiconfiguration Dirac-Hartree-Fock and Relativistic Configuration Interaction Calculations of Transition Data for B-like S XII

DSpace Repository

Large-scale Multiconfiguration Dirac-Hartree-Fock and Relativistic Configuration Interaction Calculations of Transition Data for B-like S XII

Details

Files for download

Find Full text There are no files associated with this item..

Overview of item record
Publication Article, peer reviewed scientific
Title Large-scale Multiconfiguration Dirac-Hartree-Fock and Relativistic Configuration Interaction Calculations of Transition Data for B-like S XII
Author Wang, Kai ; Song, Chang Xian ; Jönsson, Per ; Ekman, Jörgen ; Godefroid, Michel ; Zhang, Chun Yu ; Si, Ran ; Zhao, Xiao Hui ; Chen, Chong Yang ; Yan, Jun
Date 2018
English abstract
Excitation energies and lifetimes for the 213 lowest states of the n <= 5 configurations in B-like S XII are calculated using highly correlated wave functions, optimized with the fully relativistic multiconfiguration Dirac-Hartree-Fock method. Multipole transition rates and associated radiative data (line strengths and oscillator strengths) for transitions connecting these levels are also reported. The theoretical excitation energies are systematically compared with the NIST Atomic Spectra Database in which misidentifications are pointed out. After eliminating the latter, a mean energy difference with the standard deviation between computed and observed energies of 12 +/- 341 cm(-1) is obtained for the n >= 3 high-lying states. This level of accuracy confirms that elaborate ab initio calculations can assist in the identification of new emission lines in the solar and other astrophysical spectra. The present work provides atomic data of high accuracy for an ion of astrophysical interest, B-like S XII, for which experimental data are scarce.
DOI https://doi.org/10.3847/1538-4357/aad5dc (link to publisher's fulltext.)
Publisher American Astronomical Society
Host/Issue Astrophysical Journal;2
Volume 864
ISSN 0004-637X
Language eng (iso)
Subject atomic data
atomic processes
Sciences
Research Subject Categories::NATURAL SCIENCES
Handle http://hdl.handle.net/2043/26691 Permalink to this page
Facebook

This item appears in the following Collection(s)

Details

Search


Browse

My Account

Statistics