How to Keep an Eye on a Few Small Things

Bengt J. Nilsson†

Paweł Żyliński

Abstract

We present a \((k + h)\)-FPT algorithm for computing a shortest tour that sees \(k\) specified points in a polygon with \(h\) holes. We also present a \(k\)-FPT approximation algorithm for this problem having approximation factor \(\sqrt{2}\). In addition, we prove that the general problem cannot be polynomially approximated better than by a factor of \(\Omega(\log n)\), unless \(P=\text{NP}\), where \(n\) is the total number of edges of the polygon.

1 Introduction

The problem of computing a shortest tour that sees a specified set of objects in an environment of obstacles has a long history. The first results were published in 1986 [2] considering shortest tours that see monotone and simple rectilinear polygons [3]. For simple polygons, a sequence of articles establishes polynomial time solutions [4, 14, 13, 9, 15, 12, 5].

In a polygon with holes, finding a shortest tour that sees the complete environment is NP-hard [3]. Mata and Mitchell [10] construct an approximation algorithm with logarithmic approximation factor and Dinitescu and Tóth [7] provide upper bounds on the length of such tours in this setting.

Dinitescu et al. [6] consider the shortest guarding tour among a set of non-parallel lines. Here the lines are seen as thin corridors and the objective is for a shortest tour to visit each line to see it. They show that the problem is polynomially tractable for lines in 2D but NP-hard for lines in 3D.

We consider the problem of guarding or covering a specified set of points positioned in a geometric domain with a closed curve. We call this problem the shortest guarding tour problem. We show that computing the shortest guarding tour in a polygon with holes cannot be approximated better than by a factor of \(\Omega(\log n)\) in polynomial time unless \(P=\text{NP}\). On the other hand, we show that there is a \((k + h)\)-fixed parameter tractable algorithm for the problem, where \(k\) is the number of points to be guarded and \(h\) is the number of holes. We also show a \(k\)-fixed parameter tractable approximation algorithm for the problem having approximation factor \(\sqrt{2}\).

2 Computing the Shortest Guarding Tour

Let \(P\) be a polygon with \(h\) holes, having a total of \(n\) edges and let \(S = \{p_1, \ldots, p_k\}\) be a set of \(k\) points to be guarded in \(P\). We assume that all vertices of \(P\) and the points in \(S\) are in general position. Consider the visibility polygon of a point \(V(p), p \in S\). The boundary edges of \(V(p)\) consist of line segments, either collinear to edges of \(P\), or properly interior to \(P\) but connecting two boundary points. We call these latter segments windows of \(V(p)\). A window is complete, if it partitions \(P\) into two disconnected pieces, i.e., the two endpoints of the window belong to the same hole (or the outer boundary of \(P\)). A complete window is useless, if the two components of the partition do not both contain points of \(S\). All other windows (also incomplete ones) are useful.

Lemma 1 The number of useful windows of \(V(p)\) is at most \(h(h + 1) + k - 1\).

Proof. Enumerate each hole from 1 to \(h\) and let the outer boundary have index 0. Let the two endpoints of a window be indexed by the corresponding indices of their adjacent hole (or outer boundary of \(P\)). We have to consider two cases. First, for each pair of different indices, it can be shown by induction on \(h\), there can be only two windows having endpoints with these indices. This gives us at most \(h(h + 1)\) useful windows. Second, if the two window endpoints have the same index, this means that the window is complete and partitions \(P\) into different pieces. Since there are \(k\) points in \(S\), at most \(k - 1\) complete windows can have points from \(S\) on both sides. Hence, the number of useful windows of \(V(p)\) is as stated. \(\square\)

A shortest guarding tour, denoted \(T^*\), that sees all the points in \(S\) is a shortest tour that intersects each of the visibility polygons \(V(p), p \in S\). Each subpath of \(T^*\) between two consecutive visibility polygons \(V(p)\) and \(V(p')\) is a shortest path between points on useful windows of \(V(p)\) and \(V(p')\). One of the two component pieces of the interior of \(P\) partitioned by a useless window \(w\), does not contain any points of \(S\). Hence, since subpaths of shortest paths are also shortest paths, \(T^*\) will never properly intersect \(w\) and we can therefore disregard any useless window.

The arrangement of the useful windows from all the visibility polygons \(V(p), p \in S\), consists of maximal line segments having window endpoints and window
intersection points as endpoints. We call these maximal line segments gates. From Lemma 1, it follows that there are at most \(k(h(h+1)+k-1)^2 \) gates bounding a visibility polygon. For a point \(p \in S \), we denote by \(G(p) \) the set of gates being subsegments of useful windows of \(V(p) \). To a gate \(g \) we also associate the set \(B(g) \) consisting of those points \(p \in S \) for which \(g \subseteq V(p) \). Every gate \(g \) also has two sides, \(s \) facing the interior, and \(s' \) facing the exterior of the associated visibility polygon.

The tour \(T^* \) visits the visibility polygons of \(p \in S \) in some order and does so by entering a visibility polygon through a gate \(g \) from side \(s' \), leaving \(g \) from one of its two sides, and then moving to a gate \(g' \) of the next visibility polygon using a shortest path, entering \(g' \) through side \(s' \). Hence, in order to compute \(T^* \), it suffices to establish the correct set of gates, their exit sides, their ordering as they are visited by \(T^* \) and the correct intersection points between \(T^* \) and the gates. Since there are few gates, we can do this by trying all possible configurations.

Let \(\Gamma \) denote any set of at most one gate from each set \(G(p), p \in S \) such that \(\bigcup_{p \in \Gamma} B(g) = S \). For every possible set \(\Gamma \), every positive integer, \(l \leq (|\Gamma| - 1)! \) and every non-negative integer \(r \leq 2|\Gamma|! \), we compute a tour \(T_{\Gamma,l,r}^* \). \(\Gamma \) specifies the set of gates that \(T_{\Gamma,l,r}^* \) will pass, \(l \) specifies the ordering in which the visibility polygons are visited and \(r \) specifies at which gates the tour makes reflection contact (or crossing contact). Given two gates \(g_i \) and \(g_{i'} \) such that \(g_{i'} \notin G(p) \), for any \(p \in B(g_i) \), we compute the shortest paths from the two endpoints of \(s_i \) to the two endpoints of \(s_{i'} \), and the shortest paths from the two endpoints of \(s_i \) to the two endpoints of \(s_{i'} \), if they exist. This can be accomplished by considering the windows of \(g_i \) and \(g_{i'} \) to be thin obstacle walls connecting the holes at the window endpoints.

The two non-crossing paths from the endpoints of \(s_i \) to the endpoints of \(s_{i'} \) bound a polygonal region \(t_{i,i'} \), and the two non-crossing paths from the endpoints of \(s_i \) to the endpoints of \(s_{i'} \) bound another polygonal region \(t_{i',i} \); see Figure 1(a). We call these regions tubes. The portion of \(T_{\Gamma,l,r} \) between \(g_i \) and \(g_{i'} \) must lie in \(t_{i,i'} \), if \(T_{\Gamma,l,r} \) makes a reflection at \(g_i \), and in \(t_{i',i} \), if the tour crosses \(g_i \) properly. In this way, we construct a sequence of tubes \(t_{i_1,i_2}, t_{i_2,i_3}, \ldots, t_{i_{t-1},i_t} \), each with \(j_1 = 0 \) or \(1 \) depending on whether the tour reflects or crosses at the corresponding gate, that we glue together in sequence at the gates to obtain a hourglass \(H_{\Gamma,l,r,g_{i_1}} \) connecting \(g_{i_1} \) in \(t_{i_1,i_2} \) with its mirror image \(g_{i_1} \) in \(t_{i_{t-1},i_t} \); see Figure 1(b). Note that, to account for the reflection contact at a gate \(g_i \), we glue the reflection of the tube \(t_{i,i'} \) along gate \(g_i \) to the hourglass.

In this way, an hourglass is a two-manifold possibly containing obstacles in which the shortest path from a point \(g_{i_1} \) in \(t_{i_1,i_2} \) to its mirror image point on \(g_{i_1} \) in \(t_{i_{t-1},i_t} \) corresponds to the guarding tour \(T_{\Gamma,l,r,g_{i_1}} \).

In the next section, we show how to compute the shortest path from a point \(q \) on \(g_{i_1} \) in \(t_{i_1,i_2} \) to its corresponding mirror image on \(g_{i_1} \) in \(t_{i_{t-1},i_t} \) in \(O(k^4n^4) \) time, given the hourglass \(H_{\Gamma,l,r,g_{i_1}} \). This path can then be folded at the appropriate reflection gates by establishing the intersection points between the path and the gates in \(\Gamma \) to obtain the guarding tour.

The number of possible sets \(\Gamma \) is bounded by \((k(h(h+1)+k)^2)^k \), the number of orderings of the visibility polygons is \((|\Gamma| - 1)! \) \leq (k-1)! and the number of choices for reflection or crossing is \(2|\Gamma|! \leq 2^k \).

Theorem 2 A shortest guarding tour for \(k \) points in a polygon with \(h \) holes is computed by the algorithm in \(k!2^k k^{k+3}(h(h+1)+k)^{2k} \cdot O(n^4) \) time.

2.1 The Sliding Process

Given an hourglass \(H_g \) connecting a gate \(g \) in the first tube of \(H_g \) with the image of \(g \) in the last tube of \(H_g \), we call it \(g' \). Each tube of \(H_g \) has complexity \(O(n) \) and, since \(H_g \) consists of at most \(2k \) tubes glued together, \(H_g \) has complexity \(O(kn) \).

To compute the parameterized shortest path \(\Pi(q) \) from every point \(q \) on \(g \) to its image \(q' \) on \(g' \), we begin by computing the shortest paths in \(H_g \) between all vertices visible from \(g \) to all vertices visible from \(g' \). This takes \(O(k^2n^4) \) time. Let \(q \) be one endpoint of \(g \) and let \(q' \) be its mirror on \(g' \). Connect \(q \) and \(q' \) to each visible vertex in \(H_g \); see Figure 2(a). This gives us \(O(k^2n^2) \) paths connecting \(q \) with \(q' \). As we slide \(q \) and \(q' \) along \(g \) and \(g' \), we maintain all the paths connecting the points with vertices visible to them. Any such path has length \(||q,v'||+||SP(v,v'||)+||v',q'|| \), where \(SP(v,v') \) is the shortest path between vertices \(v \) and \(v' \). For each point \(q \) during the sliding process, we also maintain the shortest of all the paths \(\Pi(q) \).

As the sliding proceeds, we have to update the path \(\Pi(q) \) when structural changes occur. This happens 1) when \(\Pi(q) \) leaves a vertex where a turn of the path
each path \(v \) once, for every pair \(q \) at most once and we can obtain this by differentiating the distance function \(||\Pi(q)|| \) on \(q \). Thus, we can in \(O(k^2n^2) \) time obtain the point \(q^* \) for which \(||\Pi(q^*)|| \leq ||\Pi(q)|| \), for all points \(q \in g \).

3 Approximating the Shortest Guarding Tour

We can trade computation time for accuracy in the algorithm above by using dynamic programming to reduce the number of configurations. For each point \(p \in S \) and each pair of gates \(g_i \) and \(g_j \), with \(g_i \in \mathcal{G}(p) \) and \(g_j \notin \mathcal{G}(p) \), we compute the shortest path \(\pi_{i,j} \) from \(g_i \) to \(g_j \). For both gates \(g_i \) or \(g_j \), the path either connects to one of the endpoints of the gate, or it is orthogonal to it. Let \(d_{i,j} \) be the length of \(\pi_{i,j} \), let \(e_{i,j} \) be the segment between the intersection points of \(\pi_{i,j} \) and \(\pi_{i,j} \) on \(g_i \) and \(g_j \), and let \(d_{i,j} \) be the length of \(e_{i,j} \). The computation of these paths takes \((k^2h^2 + k^2)O(n^2) \) steps. Adding the time for preprocessing and the fact that \(h \leq n \), we can prove the following theorem.

Theorem 3 An approximate shortest guarding tour for \(k \) points in a polygon with \(h \) holes having approximation factor \(\sqrt{2} \) is computed by the dynamic programming algorithm in \(2^k \cdot O(k^{16} + k^2n^{16}) \) time.

It remains to show the approximation factor. Consider the sequence of gates that the shortest guarding tour \(T^* \) intersects. If we, for each gate \(g_i \), replace the segments of \(T^* \) incident to \(g_i \), with the shortest segment to \(g_i \) possibly followed by a segment along along \(g_i \), we obtain a new tour \(T_r \). The, at most, two segments incident to \(g_i \) are replaced with axis parallel segments in a coordinate system where \(g_i \) is parallel to the \(x \)-axis. For any sequence of gates, we say that such a tour has the rectilinearity property. The detour of \(T_r \) is bounded by the length of two sides of a rectangle connecting the segment endpoints not on \(g_i \), which in turn is at most a factor \(\sqrt{2} \). The algorithm computes a shortest tour having the rectilinearity property, thus having length bounded by that of \(T_r \).

4 Inapproximation of the Shortest Guarding Tour

To guard a discrete set of points in a polygon with holes using a shortest tour is NP-hard as can be shown with a reduction from TSP [3]. We show a gap preserving reduction from Set Cover to our guarding problem, essentially modifying the construction of Eidenbenz et al. [8] to prove that approximating our guarding problem within a logarithmic factor is NP-hard in general [11]. Let \((X, \mathcal{F})\) be a set system with \(X = \{x_1, \ldots, x_k\} \) a set of \(k \) items and \(\mathcal{F} = \{F_1, \ldots, F_m\} \) a family of \(m \) sets containing the items in \(X \), i.e., each \(F_i \subseteq X \). We transform this instance into a polygon \(P \) with holes and a set of points \(S \) to be guarded.

Given a bipartite graph representing the items in \(X \) and the sets in \(\mathcal{F} \); see Figure 3(a). We build \(P \) as follows: construct \(2k + 1 \) points evenly spaced along a parabola and connect the points to form a path, denoted \(\Pi \). The path \(\Pi \) forms the lower boundary of \(\Pi \). Identify the points on \(\Pi \) having even index with the items \(x_1, \ldots, x_k \in X \). Above \(\Pi \) construct \(m \) points corresponding to each set \(F_i \in \mathcal{F} \) evenly spaced along a horizontal line segment \(L \) and connect the left and right endpoints of \(L \) with the left and right endpoints of \(\Pi \) respectively and connect the left and right endpoints of \(L \) with a point \(q \) slightly above \(L \) and to the left of the left endpoint of \(L \). At \(q \), \(P \) has an extra notch with an additional point \(x_0 \) at the bottom vertex; see Figure 3(b). We fill the region inside the polygon with holes in such a way that \(q \) sees \(x_0 \) and the points corresponding to each \(F_j \in \mathcal{F} \) and each \(x_j \) sees \(F_j \) if and only if \(x_i \in F_j \).
Figure 3: Illustrating the reduction from Set Cover.

To finalize the construction, let d and d' denote the distance from q to the furthest and closest among the points corresponding to $F_j \in \mathcal{F}$ respectively. The visibility lines connecting x_i and F_j, if $x_i \in F_j$, can be seen as thin corridors making up the interior of the polygon. These corridors can intersect and thus determine regions where more than one item x_i can be seen. We call these regions X-regions. Let l denote the difference in height between the highest X-region and the horizontal line segment L. By placing q sufficiently far to the left of L and then placing L sufficiently high above Π, we can guarantee that $d(m - 1) < d'm$ and $dn < l$ ($m = |\mathcal{F}|$).

The construction can be built in polynomial time and fits in a polynomially sized bounding box with integer vertex coordinates for \mathbf{P}. Our instance of the shortest guarding tour problem consists of the polygon \mathbf{P} and the set \mathcal{S}, the $k+1$ vertices corresponding to x_0, \ldots, x_k.

Let \mathcal{F}^* be an optimal solution to the set cover instance $(\mathcal{X}, \mathcal{F})$. We construct a solution to the shortest guarding tour problem in \mathbf{P} seeing the points x_0, \ldots, x_k as follows: from q visit each of the points corresponding to the sets $F_j \in \mathcal{F}^*$ in order from left to right along L, each time going back to q. The length of the tour constructed is at least $2d'[\mathcal{F}^*]$ and at most $2l[\mathcal{F}^*]$ and it sees each of the points $x_i \in \mathcal{X}$ in addition to x_0. No other tour that sees these points can have shorter length since either 1) it corresponds to a non-optimal solution to the set cover instance, or 2) it must go below the regions where the visibility lines between points of F_j and points of x_i intersect each other, thus having length at least $2l > 2dm \geq 2d[\mathcal{F}^*]$.

Similarly, any shortest guarding tour for x_0 and the points corresponding to the items in \mathcal{X} must visit the points corresponding to the sets $F_j \in \mathcal{F}^*$, hence from the tour we can obtain these sets and return the optimal solution to the set system $(\mathcal{X}, \mathcal{F})$.

Since the reduction is gap preserving, the approximation ratio for our tour problem is also $\Omega(\log m) = \Omega(\log n)$, where n is the number of edges. To see this, note that we can assume that $k \in \Theta(m^c)$, for some constant c. The number of holes is bounded by $(k + 1)(m + 1)$, each hole has at most $nk + 6$ edges, and the outer boundary has $2k + 7$ edges. Hence, $\Omega(m^c) \geq 2k + 7 \leq n \leq (nk + 6)(k+1)(m+1)+2k+7 \in O(m^{2c+2c})$, proving our bound.

Theorem 4 A shortest guarding tour for a discrete set of points in a polygon with holes cannot be approximated in polynomial time with an approximation factor of $\Omega(\log n)$ unless $P=NP$, where n is the total number of edges of the polygon.

References

